Research Article

The rising role of mesenchymal stem cells in the treatment of COVID-19 infections

Al-Anazi KA* and Al-Jasser AM

Published: 07/07/2020 | Volume 4 - Issue 1 | Pages: 011-016

Infectious diseases are a leading cause of death worldwide [1,2]. The Mid-20th century witnessed most of the antimicrobial discoveries but recently there is dramatic shortage of new classes of antimicrobial agents due to failure to build a sustainable antimicrobial discovery platform [1-4]. For example, antibiotics comprise ˂ 1.5% of the compounds under investigation at the major pharmaceutical and biotechnology companies [1,5].

Read Full Article HTML DOI: 10.29328/journal.jsctt.1001021 Cite this Article

References

 

  1. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004; 38: 1279‐1286. PubMed: https://pubmed.ncbi.nlm.nih.gov/15127341/
  2. Hoffman PS. Antibacterial discovery: 21st century challenges. Antibiotics (Basel). 2020; 9: E213. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32353943
  3. Piddock L, Garneau-Tsodikova S, Garner C. Ask the experts: how to curb antibiotic resistance and plug the antibiotics gap? Future Med Chem. 2016; 8: 1027‐1032. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27327784
  4. Stehr M, Elamin AA, Singh M. Filling the pipeline - new drugs for an old disease. Curr Top Med Chem. 2014; 14: 110‐129. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24236723
  5. Gottfried J. History repeating? Avoiding the return to the pre-antibiotic age. Harvard University’s DASH Repository. 2005; 1-72. http://dash/harvard.edu/bitstream/handle/1/8889467/Gottfried05.pdf?sequence=1 
  6. Jackson N, Czaplewski L, Piddock LJV. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother. 2018; 73: 1452‐1459. PubMed: https://pubmed.ncbi.nlm.nih.gov/29438542/
  7. Luepke KH, Mohr JF 3rd. The antibiotic pipeline: reviving research and development and speeding drugs to market. Expert Rev Anti Infect Ther. 2017; 15: 425‐433. PubMed: https://pubmed.ncbi.nlm.nih.gov/28306360/
  8. Metlay JP, Powers JH, Dudley MN, Christiansen K, Finch RG. Antimicrobial drug resistance, regulation, and research. Emerg Infect Dis. 2006; 12: 183‐190. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373116/
  9. Singer AC, Kirchhelle C, Roberts AP. Reinventing the antimicrobial pipeline in response to the global crisis of antimicrobial-resistant infections. F1000 Res. 2019; 8: 238. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30906539
  10. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, et al. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control. 2012; 1: 11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22958833
  11. Gupta SK, Nayak RP. Dry antibiotic pipeline: Regulatory bottlenecks and regulatory reforms. J Pharmacol Pharmacother. 2014; 5: 4‐7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24554902
  12. Powers JH. Antimicrobial drug development-the past, the present, and the future. Clin Microbiol Infect. 2004; 10 Suppl 4: 23‐31. PubMed: https://pubmed.ncbi.nlm.nih.gov/15522037/
  13. Monnet DL. Antibiotic development and the changing role of the pharmaceutical industry. Int J Risk Safety Med. (IOS Press). 2005; 17: 133-145. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746591/
  14. Ianevski A, Zusinaite E, Kuivanen S, Strand M , Lysvand H, et al. Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Res. 2018; 154: 174‐182. PubMed: https://pubmed.ncbi.nlm.nih.gov/29698664/
  15. Bryan-Marrugoa OL, Ramos-Jiménez J, Barrera-Saldañaa H, Rojas-Martíneza A, Vidaltamayo R, et al. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitaria. 2015; 17: 165-174. PubMed:
  16. Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, et al. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res. 2019; 167: 45‐67. PubMed: https://pubmed.ncbi.nlm.nih.gov/30974127/
  17. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016; 29: 695‐747. PubMed: https://pubmed.ncbi.nlm.nih.gov/27281742/
  18. Richman DD, Nathanson N. Antiviral therapy. In: Viral pathogenesis (third edition) from basics to systems biology. Academic Press. 2016; 271-287. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149377/
  19. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019; 14: 397‐412. PubMed: https://pubmed.ncbi.nlm.nih.gov/30849247/
  20. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76: 71-76. PubMed: https://pubmed.ncbi.nlm.nih.gov/32112977/
  21. Tu H, Tu S, Gao S, Shao A, Sheng J. The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J Infect. 2020. pii: S0163-4453(20)30222-X. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166041/
  22. Acter T, Uddin N, Das J, Akhter A, Choudhury TR, et al. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci Total Environ. 2020; 730: 138996. PubMed: https://pubmed.ncbi.nlm.nih.gov/32371230/
  23. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020; 63: 119-124. PubMed: https://pubmed.ncbi.nlm.nih.gov/32252141/
  24. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020: 105948. PubMed: https://pubmed.ncbi.nlm.nih.gov/32201353/
  25. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87: 281‐286. PubMed: https://pubmed.ncbi.nlm.nih.gov/32166607/
  26. Al-Anazi KA, Al-Anazi WK, Al-Jasser AM. Neutrophils, NETs, NETosis and their paradoxical roles in COVID-19. J Stem Cell Ther Transplant. 2020; 4: 003-010. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184981/
  27. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433. PubMed: https://pubmed.ncbi.nlm.nih.gov/32113704/
  28. Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med Wkly. 2020; 150: w20249. PubMed: https://pubmed.ncbi.nlm.nih.gov/32298458/
  29. Li H, Liu L, Zhang D, Xu J, Dai H, et al.SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395: 1517-1520. PubMed: https://pubmed.ncbi.nlm.nih.gov/32311318/
  30. 30. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38: 1-9. PubMed: https://pubmed.ncbi.nlm.nih.gov/32105090/
  31. Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, et al. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol. 2020; 47: 107228. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162778/
  32. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17: 259‐260. PubMed: https://pubmed.ncbi.nlm.nih.gov/32139904/
  33. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; cvaa106. PubMed:
  34. Mozzini C, Girelli D. The role of neutrophil extracellular traps in COVID-19: Only an hypothesis or a potential new field. Thrombosis Res. 2020; 26-27. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184981/
  35. Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med Hypotheses. 2020; 140: 109762. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175888/  
  36. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020: 108427. Doi: 10.1016/j.clim.2020.108427. Epub ahead of print. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169933/
  37. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020. pii: 138999. Doi: 10. 1172/jci.insight.138999. Epub ahead of print. PubMed: https://pubmed.ncbi.nlm.nih.gov/32329756/
  38. Kanda M, Nagai T, Takahashi T, Liu ML, Kondou N, et al. Leukemia inhibitory factor enhances endogenous cardiomyocyte regeneration after myocardial infarction. PLoS One. 2016; 11: e0156562. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27227407
  39. Slater H. FDA accepts IND for NK cell therapy CYNK-001 to treat patients with COVID-19. Immuno-Oncology News. April 3, 2020. PubMed:
  40. Rameshrad M, Ghafoori M, Mohammadpour AH, Nayeri MJD, Hosseinzadeh H. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19). Naunyn Schmiedebergs Arch Pharmacol. 2020; 1‐16. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235439/
  41. Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 2020; 117883. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263255/
  42. Al-Anazi KA, Al-Jasser AM. Mesenchymal stem cells-their antimicrobial effects and their promising future role as novel therapies of infectious complications in high risk patients. In: Progress in stem cell transplantation. Edited by: Demirer T. Intech Open. 2015. PubMed:
  43. Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood. 2012; 119: 1801-1809. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22228625
  44. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016; 25: 829-848. PubMed: https://pubmed.ncbi.nlm.nih.gov/26423725/
  45. Thanunchai M, Hongeng S, Thitithanyanont A. Mesenchymal stromal cells and viral infection. Stem Cells Int. 2015; 2015: 860950. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26294919
  46. Yang K, Wang J, Wu M, Li M, Wang Y, et al. Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Sci Rep. 2015; 5: 7820. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25592282
  47. Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: Mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2014 Dec; 2: 1016-1026. PubMed: https://pubmed.ncbi.nlm.nih.gov/25465643/
  48. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med. 2015; 3: 24-32. PubMed: https://pubmed.ncbi.nlm.nih.gov/25529339/
  49. Chan MC, Kuok DI, Leung CY, Hui KPY, Valkenburg SA, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci USA. 2016; 113: 3621‐3626. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822574/
  50. Rossetti D, Di Angelo Antonio S, Lukanović D, Kunic T, Certelli C, et al. Human umbilical cord-derived mesenchymal stem cells: Current trends and future perspectives. Asian Pac J Reprod 2019; 8: 93-101. PubMed:
  51. Horie S, Masterson C, Brady J, Loftus P, Horan E, et al. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: Impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res Ther. 2020; 11: 116. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071745/
  52. Loy H, Kuok DIT, Hui KPY, Choi MHL, Yuen W, et al.et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A (H5N1) virus-associated acute lung injury. J Infect Dis. 2019; 219: 186-196. PubMed: https://pubmed.ncbi.nlm.nih.gov/30085072/
  53. Atluri S, Manchikanti L, Hirsch JA.. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use. Pain Physician. 2020; 23: E71-E83. PubMed: https://pubmed.ncbi.nlm.nih.gov/32214286/
  54. Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med. 2020; 18: 203. PubMed: https://pubmed.ncbi.nlm.nih.gov/32423449/
  55. Shin S, Kim Y, Jeong S, Hong S, Kim I, et al. The therapeutic effect of human adult stem cells derived from adipose tissue in endotoxemic rat model. Int J Med Sci. 2013; 10: 8-18. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534872/ v
  56. Al-Anazi KA, Al-Anazi WK, Al-Jasser AM. The Rising role of mesenchymal stem cells in the treatment of various infectious complications. In: Update on mesenchymal and induced pluripotent stem cells. Edited by Al-Anazi KA. Intech Open. 2019. PubMed:
  57. Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep. 2020; 1‐7. PubMed: https://pubmed.ncbi.nlm.nih.gov/32281052/
  58. Barminko J, Gray A, Maguire T, Schloss R, Yarmush ML. Mesenchymal stromal cell mechanisms of immunomodulation and homing. In: Chase L, Vemuri M (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine 2013. Humana Press, Totowa, NJ.
  59. Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, et al. Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells. 2020; 9. pii: E924. PubMed: https://pubmed.ncbi.nlm.nih.gov/32283815/
  60. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019; 8. pii: E467. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31100966
  61. Vizoso FJ, Eiro N, Cid S, Schneider J,Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017; 18. pii: E1852. PubMed: https://pubmed.ncbi.nlm.nih.gov/28841158/
  62. Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res. 2018; 19: 218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30413158
  63. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, et al. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. 2016; 18: 13-24. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924535/
  64. Bari E, Ferrarotti I, Torre ML, Corsico AG, Perteghella S. Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through "pharmaceuticalization" for the best formulation. J Control Release. 2019; 309: 11-24. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31326462
  65. Leng Z, Zhu R, Hou W, Fing Y, Yang Y, et al. Transplantation of ACE2- Mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11: 216‐228. Published 2020 Mar 9. PubMed: https://pubmed.ncbi.nlm.nih.gov/32257537/
  66. Liang B, Chen J, Li T, Wu H, Yang W, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. China Xiv: 202002.00084v1 PubMed:
  67. Khoury M, Rocco PRM, Phinney DG, Krampera M, Martin I, et al. Cell-based therapies for COVID-19: Proper clinical investigations are essential. Cytotherapy. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163352/
  68. Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov. 2020; 5: 100019. PubMed: https://pubmed.ncbi.nlm.nih.gov/32296777
  69. Pluristem. Pluristem reports preliminary data from its COVID-19 compassionate use program, treating seven patients with acute respiratory failure 2020. Clinical Study Results. https://www.pluristem.com/wp-content/uploads/2020/04/PSTI-PR-Follow-up-on-Covid-19-treatments. Final-For-Release.pdf
  70. Sami T. Mesoblast reports 83% survival in ventilator-dependent COVID-19 patients following stem cell therapy: BioWorld; 2020. Preliminary Clinical Trial Results. https://www.bioworld.com/articles/434640-mesoblast-reports-83-survival-in-ventilator-dependent-covid-19-patients-following-stem-cell-therapy 
  71. Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020; 21: 2657. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177898/
  72. Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020; 41: 363‐382. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144665/
  73. Moll G, Hoogduijn MJ, Ankrum JA. Editorial: Safety, efficacy and mechanisms of action of mesenchymal stem cell therapies. Front Immunol. 2020; 11: 243. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040069/
  74. Zhao RC. Stem cell-based therapy for coronavirus disease 2019. Stem Cells Dev. 2020; 29: 679‐681. PubMed: https://pubmed.ncbi.nlm.nih.gov/32292113/
  75. Liu S, Peng D, Qiu H, Yang K, Fu Z, et al. Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Res Ther. 2020; 11, 169.  PubMed: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-01678-8
  76. Basil MC, Katzen J, Engler AE, Guo M, Herrigeset MJ, et al. The cellular and physiological basis for lung repair and regeneration: Past, present, and future. Cell Stem Cell. 2020; 26: 482‐502. PubMed:   https://www.ncbi.nlm.nih.gov/pubmed/32243808
  77. Börger V, Weiss DJ, Anderson JD, Borràs FE, Bussolati B, et al. ISEV and ISCT statement on EVs from MSCs and other cells: considerations for potential therapeutic agents to suppress COVID-19. Cytotherapy. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229942/
  78. Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with Mesenchymal Stem Cell therapy. Biotechnol Rep (Amst). 2020; e00467. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224671/
  79. Ankrum J, Carver RJ. Can cell therapies halt cytokine storm in severe COVID-19 patients? Sci Transl Med. 2020; 12: eabb5673. PubMed:
  80. Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19) - induced pneumonia. Aging Dis. 2020; 11: 462‐464. PubMed: https://pubmed.ncbi.nlm.nih.gov/32257554/
  81. Zumla A, Wang FS, Ippolito G, Petrosillo N, Agratiet C, et al. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of mesenchymal stromal (stem) cell (MSC) therapy - achieving global consensus and visibility for cellular host-directed therapies. Int J Infect Dis. 2020; 96: 431-439. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231497/
  82. Gentile P, Sterodimas A. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia. Expert Opin Biol Ther. 2020; 1‐6. PubMed: https://pubmed.ncbi.nlm.nih.gov/32329380/
  83. Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses. 2020; 144: 109865. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242964/  
  84. Rao Us V, Thakur S, Rao J, Arakeri G, Brennanet BA, et al. Mesenchymal stem cells-bridge catalyst between innate and adaptive immunity in Covid 19. Med Hypotheses. 2020; 109845. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232064/
  85. O'Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today. 2020; S1359-6446(20)30170-7. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202814/
  86. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020; 29: 747-754. PubMed: https://pubmed.ncbi.nlm.nih.gov/32380908/