Research Article

Natural killer cells in patients with hematologic malignancies, solid tumors and in recipients of hematopoietic stem cell transplantation

Al-Anazi KA*, Al-Jasser AM and Al-Anazi WK

Published: 12/09/2019 | Volume 3 - Issue 1 | Pages: 031-055


Natural killer cells represent the first line of defense against infections and tumors and can be derived from various sources including: bone marrow, peripheral blood, specific types of human stem cells, and certain cell lines. The functions of natural killer cells are influenced by: several cytokines, activating and inhibitory receptors, as well as other immune cells such as dendritic cells and mesenchymal stem cells.

Natural killer cells are attractive candidates for adoptive cellular therapy in patients with hematologic malignancies and solid tumors in addition to recipients of various forms of hematopoietic stem cell transplantation as they enhance antitumor effects without causing graft versus host disease. Several clinical trials have shown safety and efficacy of natural killer cell products obtained from autologous as well as allogeneic sources and used in conjunction with cytotoxic chemotherapy, monoclonal antibodies and novel agents.

The following review, which includes extensive literature review on several aspects of natural killer cells, will give particular attention to: the rising role of natural killer cell therapies in patients with malignant hematological disorders, solid tumors and in recipients of stem cell therapies; preparation and manufacture of natural killer cell products; challenges facing the utilization of this form of cellular therapy including evolution of resistance; and maneuvers that can be employed to enhance the efficacy of natural killer cell therapies as well as suggested solutions to resolve the remaining challenges.

Read Full Article HTML DOI: 10.29328/journal.jsctt.1001017 Cite this Article


  1. Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol. 2018; 107: 262-270. PubMed:
  2. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127: 3341-3349. PubMed:
  3. See DM, Khemka P, Sahl L, Bui T, Tilles JG. The role of natural killer cells in viral infections. Scand J Immunol. 1997; 46: 217-224.  PubMed:
  4. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017; 47: 820-833. PubMed:
  5. Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J, et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity. 2018; 49: 971-986. PubMed:
  6. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010; 142: 847-856. PubMed:
  7. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9: 1869. PubMed:
  8. van Erp EA, van Kampen MR, van Kasteren PB, de Wit J. Viral infection of human natural killer cells. Viruses. 2019; 11: 243. PubMed:
  9. Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies. Front Immunol. 2015; 6: 230. PubMed:
  10. Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, et al. Gene regulatory programs conferring phenotypic identities to human NK cells. Cell. 2019; 176: 348-360. PubMed:
  11. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015; 47: 141. PubMed:
  12. Harada Y, Teraishi K, Ishii M, Ban H, Yonemitsu Y. Clinical applications of natural killer cells. In: Natural killer cells. Edited by Aribi M. Intech Open. 2017.
  13. Matosevic S. Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. J Immunol Res. 2018; 2018: 4054815. PubMed:
  14. Tesi B, Schlums H, Cichocki F, Bryceson YT. Epigenetic regulation of adaptive NK cell diversification. Trends Immunol. 2016; 37: 451-461. PubMed:
  15. Robertson MJ. Role of chemokines in the biology of natural killer cells. J Leukoc Biol. 2002; 71: 173-183. PubMed:
  16. Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol. 2010; 341: 37-58. PubMed:
  17. Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017; 8: 930. PubMed:
  18. Melsen JE, Lugthart G, Vervat C, Kielbasa SM, van der Zeeuw SAJ, et al. Human bone marrow-resident natural killer cells have a unique transcriptional profile and resemble resident memory CD8+ T cells. Front Immunol. 2018; 9: 1829. PubMed:
  19. Smith DJ, Liu S, Ji S, Li B, McLaughlin J, Cheng D, et al. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci USA. 2015; 112: 1523-1528. PubMed:
  20. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood. 2012; 119: 5030-5036. PubMed:
  21. Mavers M, Maas-Bauer K, Negrin RS. Invariant natural killer T cells as suppressors of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Front Immunol. 2017; 8: 900. PubMed:
  22. Du J, Paz K, Thangavelu G, Schneidawind D, Baker J, Flynn R, et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood. 2017; 129: 3121-3125. PubMed:
  23. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood. 2014; 124: 3320-3328. PubMed:
  24. Sun W, Wang Y, East JE, Kimball AS, Tkaczuk K, et al. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine. 2015; 72: 48-57. PubMed:
  25. Beyaz S, Kim JH, Pinello L, Xifaras ME, Hu Y, et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat Immunol. 2017; 18: 184-195. PubMed:
  26. Merker M, Salzmann-Manrique E, Katzki V, Huenecke S, Bremm M, et al. Clearance of hematologic malignancies by allogeneic cytokine-induced killer cell or donor lymphocyte infusions. Biol Blood Marrow Transplant. 2019; 25: 1281-1292. PubMed:
  27. Yang XY, Zeng H, Chen FP. Cytokine-induced killer cells: a novel immunotherapy strategy for leukemia. Oncol Lett. 2015; 9: 535-541.
  28. Rettinger E, Huenecke S, Bonig H, Merker M, Jarisch A, et al. Interleukin-15-activated cytokine-induced killer cells may sustain remission in leukemia patients after allogeneic stem cell transplantation: feasibility, safety and first insights on efficacy. Haematologica. 2016; 101: 153-156. PubMed:
  29. Mavers M, Bertaina A. High-risk leukemia: past, present, and future role of NK cells. J Immunol Res. 2018; 2018: 1586905.             PubMed:
  30. Bonanni V, Sciumè G, Santoni A, Bernardini G. Bone marrow NK cells: origin, distinctive features, and requirements for tissue localization. Front Immunol. 2019; 10: 1569. PubMed:
  31. Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev. 2019; 287: 202-225. PubMed:
  32. Hattori N, Nakamaki T. Natural killer immunotherapy for minimal residual disease eradication following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Int J Mol Sci. 2019; 20: 2057. PubMed:
  33. Chiossone L, Vacca P, Orecchia P, Croxatto D, Damonte P, Astigiano S, et al. In vivo generation of decidual natural killer cells from resident hematopoietic progenitors. Haematologica. 2014; 99: 448-457. PubMed:
  34. Orange JS. Understanding natural killer cell deficiency. IG Living. 2018; 32-34.
  35. Mace EM, Orange JS. Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Front Immunol. 2016; 7: 545. PubMed:
  36. Vargas-Hernández A, Forbes LR. The impact of immunodeficiency on NK cell maturation and function. Curr Allergy Asthma Rep. 2019; 19: 2. PubMed:
  37. Mace EM. Phosphoinositide-3-kinase signaling in human natural killer cells: new insights from primary immunodeficiency. Front Immunol. 2018; 9: 445. PubMed:
  38. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013; 132: 515-525. PubMed:
  39. Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019; 10: 490. PubMed:
  40. Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol. 2014; 5: 2. PubMed:
  41. Angka L, Khan ST, Kilgour MK, Xu R, Kennedy MA, et al. Dysfunctional natural killer cells in the aftermath of cancer surgery. Int J Mol Sci. 2017; 18: E1787. PubMed:
  42. Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology. 2018; 153: 190-202. PubMed:
  43. Hejazi M, Manser AR, Fröbel J, Kündgen A, Zhao X, et al. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes. Haematologica. 2015; 100: 643-652. PubMed:
  44. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999; 116: 28-32. PubMed:
  45. Gill HS, Rutherfurd KJ, Cross ML. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol. 2001; 21: 264-271. PubMed:
  46. Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000; 54: 849-855.         PubMed:
  47. Takeda K, Okumura K. CAM and NK cells. Evid Based Complement Alternat Med. 2004; 1: 17-27.
  48. Witek-Janusek L, Albuquerque K, Chroniak KR, Chroniak C, Durazo-Arvizu R, et al. Effect of mindfulness based stress reduction on immune function, quality of life and coping in women newly diagnosed with early stage breast cancer. Brain Behav Immun. 2008; 22: 969-981. PubMed:
  49. Speak AO, Te Vruchte D, Davis LC, Morgan AJ, Smith DA, et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood. 2014; 123: 51-60.         PubMed:
  50. Sung PS, Jang JW. Natural killer cell dysfunction in hepatocellular carcinoma: pathogenesis and clinical implications. Int J Mol Sci. 2018; 19: 3648. PubMed:
  51. Holder KA, Russell RS, Grant MD. Natural killer cell function and dysfunction in hepatitis C virus infection. Biomed Res Int. 2014; 2014: 903764. PubMed:
  52. Caligiuri M, Murray C, Buchwald D, Levine H, Cheney P, et al. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J Immunol. 1987; 139: 3306-3313. PubMed:
  53. Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, et al. An historical overview: the discovery of how NK cells can kill enemies, recruit defense troops, and more. Front Immunol. 2019; 10: 1415. PubMed:
  54. Poznanski SM, Ashkar AA. What defines NK cell functional fate: phenotype or metabolism? Front Immunol. 2019; 10: 1414. PubMed:
  55. Huang P, Wang F, Yang Y, Lai W, Meng M, et al. Hematopoietic-specific deletion of Foxo1 promotes NK cell specification and proliferation. Front Immunol. 2019; 10: 1016. PubMed:
  56. Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol. 2018; 9: 2358. PubMed:
  57. Darji A, Kaushal A, Desai N, Rajkumar S. Natural killer cells: from defense to immunotherapy in cancer. J Stem Cell Res Ther. 2018; 8: 419.
  58. Terrén I, Mikelez I, Odriozola I, Gredilla A, González J, Orrantia A, et al. Implication of interleukin-12/15/18 and ruxolitinib in the phenotype, proliferation, and polyfunctionality of human cytokine-preactivated natural killer cells. Front Immunol. 2018; 9: 737. PubMed:
  59. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019; 40: 142-158. PubMed:
  60. Pesce S, Squillario M, Greppi M, Loiacono F, Moretta L, et al. New miRNA signature heralds human NK cell subsets at different maturation steps: involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 2018; 9: 2360. PubMed:
  61. Grudzien M, Rapak A. Effect of natural compounds on NK cell activation. J Immunol Res. 2018; 2018: 4868417. PubMed:
  62. Ravaglia G, Forti P, Maioli F, Bastagli L, Facchini A, et al. Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90 y. Am J Clin Nutr. 2000; 71: 590-598. PubMed:
  63. Kwak JH, Baek SH, Woo Y, Han JK, Kim BG, et al. Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of natural killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutr J. 2012; 11: 53. PubMed:
  64. Currier NL, Miller SC. The effect of immunization with killed tumor cells, with/without feeding of Echinacea purpurea in an erythroleukemic mouse model. J Altern Complement Med. 2002; 8: 49-58. PubMed:
  65. Partearroyo T, Úbeda N, Montero A, Achón M, Varela-Moreiras G. Vitamin B (12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats. Nutrients. 2013; 5: 4836-4848. PubMed:
  66. Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013; 341: 186-191. PubMed:
  67. Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015; 20: 3020-3026. PubMed:
  68. Millman AC, Salman M, Dayaram YK, Connell ND, Venketaraman V. Natural killer cells, glutathione, cytokines, and innate immunity against Mycobacterium tuberculosis. J Interferon Cytokine Res. 2008; 28: 153-165. PubMed:
  69. Dahlberg CI, Sarhan D, Chrobok M, Duru AD, Alici E. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol. 2015; 6: 605.         PubMed:
  70. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, et al. Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel). 2019; 11: 461. PubMed:
  71. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, et al. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol. 2017; 8: 631. PubMed:
  72. Chouaib S, Pittari G, Nanbakhsh A, El Ayoubi H, Amsellem S, et al. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol. 2014; 5: 95.     PubMed:
  73. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019; 10: 1205. PubMed:
  74. Pfeifer C, Highton AJ, Peine S, Sauter J, Schmidt AH, et al. Natural killer cell education is associated with a distinct glycolytic profile. Front Immunol. 2018; 9: 3020. PubMed:
  75. O’Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. Immunity. 2015; 43: 634-645.
  76. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. Trends Immunol. 2013; 34: 251-258. PubMed:
  77. Cooper MA. Natural killer cells might adapt their inhibitory receptors for memory. Proc Natl Acad Sci USA. 2018; 115: 11357-11359. PubMed:
  78. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008; 9: 503-510.
  79. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002; 195: 335-341. PubMed:
  80. Harizi H. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cell Mol Immunol. 2013; 10: 213-221. PubMed:
  81. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med. 2002; 195: 327-333. PubMed:
  82. Ferlazzo G, Morandi B. Cross-talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol. 2014; 5: 159. PubMed:
  83. Leno-Durán E, Muñoz-Fernández R, Olivares EG, Tirado-González I. Liaison between natural killer cells and dendritic cells in human gestation. Cell Mol Immunol. 2014; 11: 449-455. PubMed:
  84. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells: “l’union fait la force”. Blood. 2005; 106: 2252-2258. PubMed:
  85. Calmeiro J, Carrascal M, Gomes C, Falcão A, Cruz MT, Neves BM. Heighlighting the role of DC-NK cell interplay in immunobiology and immunotherapy. 2018.
  86. Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J. Natural killer cells: the secret weapon in dendritic cell vaccination strategies. Clin Cancer Res. 2014; 20: 1095-1103. PubMed:
  87. Sanabria MX, Vargas-Inchaustegui DA, Xin L, Soong L. Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun. 2008; 76: 5100-5109. PubMed:
  88. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002; 2: 957-964.             PubMed:
  89. Andoniou CE, Van Dommelen SL, Voigt V, Andrews DM, Brizard G, et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol. 2005; 6: 1011-1019. PubMed:
  90. Mavilio D, Lombardo G, Kinter A, Fogli M, La Sala A, et al. Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med. 2006; 203: 2339-2350. PubMed:
  91. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006; 107: 1484-1490. PubMed:
  92. Casado JG, Tarazona R, Sanchez-Margallo FM. NK and MSCs crosstalk: the sense of immunomodulation and their sensitivity. Stem Cell Rev Rep. 2013; 9: 184-189. PubMed:
  93. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008; 111: 1327-1333. PubMed:
  94. Thomas H, Jäger M, Mauel K, Brandau S, Lask S, et al. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm. 2014; 2014: 143463. PubMed:
  95. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24: 74-85. PubMed:
  96. Galland S, Vuille J, Martin P, Letovanec I, Caignard A, Fregni G, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep. 2017; 20: 2891-2905. PubMed:
  97. Petri RM, Hackel A, Hahnel K, Dumitru CA, Bruderek K, et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Rep. 2017; 9: 985-998. PubMed:
  98. Najar M, Fayyad-Kazan M, Merimi M, Burny A, Bron D, et al. Mesenchymal stromal cells and natural killer cells: a complex story of love and hate. Curr Stem Cell Res Ther. 2019; 14: 14-21. PubMed:
  99. Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L, et al. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal. 2018; 12: 673-688. PubMed:
  100. Yan CH, Liu QF, Wu DP, Zhang X, Xu LP, et al. Prophylactic donor lymphocyte infusion (DLI) followed by minimal residual disease and graft-versus-host disease-guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/relapsed acute leukemia. Biol Blood Marrow Transplant. 2017; 23: 1311-1319. PubMed:
  101. Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for graft versus-host disease: from conventional therapies to novel virotherapeutic strategies. Viruses. 2016; 8: 85. PubMed:
  102. Chang YJ, Zhao XY, Huang XJ. Strategies for enhancing and preserving anti-leukemia effects without aggravating graft-versus-host disease. Front Immunol. 2018; 9: 3041. PubMed:
  103. Vasu S, Geyer S, Bingman A, Auletta JJ, Jaglowski S, et al. Granulocyte colony-stimulating factor-mobilized allografts contain activated immune cell subsets associated with risk of acute and chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2016; 22: 658-668. PubMed:
  104. Miller JS, Warren EH, van den Brink MR, Ritz J, Shlomchik WD, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: graft-versus-tumor/leukemia reaction. Biol Blood Marrow Transplant. 2010; 16: 565-586. PubMed:
  105. Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol. 2017; 8: 496. PubMed:
  106. Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica. 2015; 100: 709-719. PubMed:
  107. Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, et al. The biology of chronic graft-versus-host Disease: a task force report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017; 23: 211-234. PubMed:
  108. Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic cell regulation of graft-vs.-host disease: immunostimulation and tolerance. Front Immunol. 2019; 10: 93. PubMed:
  109. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor cell composition and reactivity predict risk of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. J Immunol Res. 2016; 2016: 5601204. PubMed:
  110. Ruzek MC, Kavanagh BF, Scaria A, Richards SM, Garman RD. Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression. Mol Ther. 2002; 5: 115-124. PubMed:
  111. Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013; 27: 1538-1547. PubMed:
  112. Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019; 10: 1342. PubMed:
  113. Kanfar S, Al-Anazi KA. Autologous graft versus host disease: an updated review. Ann Stem Cell Regenerat Med. 2018; 1: 1002.
  114. Porrata LF. Clinical evidence of autologous graft versus tumor effect. Am J Immunol. 2009; 5: 1-7. PubMed:
  115. Porrata LF. Autologous graft-versus-tumor effect: reality or fiction? Adv Hematol. 2016; 2016: 5385972. PubMed:
  116. Kline J, Subbiah S, Lazarus HM, Van Besien K. Autologous graft-versus-host disease: harnessing anti-tumor immunity through impaired self-tolerance. Bone Marrow Transplant. 2008; 41: 505-513. PubMed:
  117. Holmberg L, Kikuchi K, Gooley TA, Adams KM, Hockenbery DM, et al. Gastrointestinal graft-versus-host disease in recipients of autologous hematopoietic stem cells: incidence, risk factors, and outcome. Biol Blood Marrow Transplant. 2006; 12: 226-234. PubMed:
  118. Batra A, Cottler-Fox M, Harville T, Rhodes-Clark BS, Makhoul I, et al. Autologous graft versus host disease: an emerging complication in patients with multiple myeloma. Bone Marrow Res. 2014; 2014: 891427. PubMed:
  119. Hammami MB, Talkin R, Al-Taee AM, Schoen MW, Goyal SD, et al. Autologous graft-versus-host disease of the gastrointestinal tract in patients with multiple myeloma and hematopoietic stem cell transplantation. Gastroenterology Res. 2018; 11: 52-57. PubMed:
  120. Schneidawind D, Pierini A, Negrin RS. Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 2013; 122: 3116-21. PubMed:
  121. Hu LJ, Zhao XY, Yu XX, Lv M, Han TT, et al. Quantity and quality reconstitution of NKG2A+ natural killer cells are associated with graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019; 25: 1-11. PubMed:
  122. Jiang YZ, Barrett AJ, Goldman JM, Mavroudis DA. Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation. Ann Hematol. 1997; 74: 1-6. PubMed:
  123. Huenecke S, Cappel C, Esser R, Pfirrmann V, Salzmann-Manrique E, et al. Development of three different NK cell subpopulations during immune reconstitution after pediatric allogeneic hematopoietic stem cell transplantation: prognostic markers in GvHD and viral infections. Front Immunol. 2017; 8: 109. PubMed:
  124. Kheav VD, Busson M, Scieux C, Peffault de Latour R, Maki G, et al. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014; 99: 1860-1867. PubMed:
  125. Meinhardt K, Kroeger I, Bauer R, Ganss F, Ovsiy I, et al. Identification and characterization of the specific murine NK cell subset supporting graft-versus-leukemia- and reducing graft-versus-host-effects. Oncoimmunology. 2015; 4: e981483. PubMed:
  126. Kariminia A, Ivison S, Ng B, Rozmus J, Sung S, et al. CD56 bright natural killer regulatory cells in filgrastim primed donor blood or marrow products regulate chronic graft-versus-host disease: the Canadian Blood and Marrow Transplant Group randomized 0601 study results. Haematologica. 2017; 102: 1936-1946. PubMed:
  127. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood. 2014; 124: 3320-3328. PubMed:
  128. Van Elssen CHMJ, Ciurea SO. NK cell therapy after hematopoietic stem cell transplantation: can we improve anti-tumor effect? Int J Hematol. 2018; 107: 151-156. PubMed:
  129. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN. Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma. 2003; 44: 997-1000. PubMed:
  130. Huttunen P, Taskinen M, Siitonen S, Saarinen-Pihkala UM. Impact of very early CD4(+) / CD8(+) T cell counts on the occurrence of acute graft-versus-host disease and NK cell counts on outcome after pediatric allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015; 62: 522-528. PubMed:
  131. Verheyden S, Schots R, Duquet W, Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia. 2005; 19: 1446-1451. PubMed:
  132. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 100: 1935-1947. PubMed:
  133. Gill S, Olson JA, Negrin RS. Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood Marrow Transplant. 2009; 15: 765-776. PubMed:
  134. Whiteside TL. The natural killer (NK) cell and synergistic antitumor effects of interferon-gamma and interleukin-2. Cancer Invest. 1990; 8: 565-566. PubMed:
  135. Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood. 2009; 113: 6120-6127. PubMed:
  136. Koh CY, Ortaldo JR, Blazar BR, Bennett M, Murphy WJ. NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood. 2003; 102: 4067-4075. PubMed:
  137. Kim Y, Lee SH, Kim CJ, Lee JJ, Yu D, et al. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. BMC Vet Res. 2019; 15:339. PubMed:
  138. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015; 6: 368. PubMed:
  139. Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013; 4: 76. PubMed:
  140. Lisovsky I, Kant S, Tremblay-McLean A, Isitman G, Kiani Z, et al. Differential contribution of education through KIR2DL1, KIR2DL3, and KIR3DL1 to antibody-dependent (AD) NK cell activation and ADCC. J Leukoc Biol. 2019; 105: 551-563. PubMed:
  141. Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, et al. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann Transl Med. 2019; 7: 105. PubMed:
  142. Hassenrück F, Knödgen E, Göckeritz E, Midda SH, Vondey V, et al. Sensitive detection of the natural killer cell-mediated cytotoxicity of anti-CD20 antibodies and its impairment by B-cell receptor pathway inhibitors. Biomed Res Int. 2018; 2018: 1023490. PubMed:
  143. Li Y, Huang K, Liu L, Qu Y, Huang Y, et al. Effects of complement and serum IgG on rituximab-dependent natural killer cell-mediated cytotoxicity against Raji cells. Oncol Lett. 2019; 17: 339-347. PubMed:
  144. Ernst D, Williams BA, Wang XH, Yoon N, Kim KP, et al. Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1. Blood Cancer J. 2019; 9: 6. PubMed:
  145. Rossi LE, Avila DE, Spallanzani RG, Ziblat A, Fuertes MB, et al. Histone deacetylase inhibitors impair NK cell viability and effector functions through inhibition of activation and receptor expression. J Leukoc Biol. 2012; 91: 321-331. PubMed:
  146. Tiper IV, Webb TJ. Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother. 2016; 65: 1411-1421. PubMed:
  147. Fiegler N, Textor S, Arnold A, Rölle A, Oehme I, et al. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood. 2013; 122: 684-693. PubMed:
  148. Al-Anazi WK, Al-Anazi KA. Epigenetics in myelodysplastic syndromes. J Mol Genet Med. 2019; 3: 1-17.
  149. Chahin H, Ekong B, Fandy TE. Epigenetic therapy in malignant and chronic diseases. J Pharmacogenom Pharmacoproteomics. 2013; 4: 118.
  150. Strauss J, Figg WD. Using epigenetic therapy to overcome chemotherapy resistance. Anticancer Res. 2016; 36: 1-4. PubMed:
  151. Ronnekleiv-Kelly SM, Sharma A, Ahuja N. Epigenetic therapy and chemosensitization in solid malignancy. Cancer Treat Rev. 2017; 55: 200-208. PubMed:
  152. Shi X, Li M, Cui M, Niu C, Xu J, et al. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am J Cancer Res. 2016; 6: 600-614. PubMed:
  153. Ni L, Wang L, Yao C, Ni Z, Liu F, et al. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep. 2017; 7: 45266. PubMed:
  154. Greene TT, Tokuyama M, Knudsen GM, Kunz M, Lin J, et al. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression. Elife. 2016; 5: e14749. PubMed:
  155. Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 2005; 65: 11136-11145. PubMed:
  156. Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, et al. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun. 2011; 25: 239-249. PubMed:
  157. Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, et al. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res. 2012; 2: 8. PubMed:
  158. Choi JW, Lee ES, Kim SY, Park SI, Oh S, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019; 19: 817. PubMed:
  159. Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol Biol. 2019; 2048: 107-119. PubMed:
  160. Min B, Choi H, Her JH, Jung MY, Kim HJ, et al. Optimization of large-scale expansion and cryopreservation of human natural killer cells for anti-tumor therapy. Immune Netw. 2018; 18: 31. PubMed:
  161. Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, et al. Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach. Biol Blood Marrow Transplant. 2015; 21: 632-639. PubMed:
  162. Xie S, Wu Z, Niu L, Chen J, Ma Y, et al. Preparation of highly activated natural killer cells for advanced lung cancer therapy. Onco Targets Ther. 2019; 12: 5077-5086. PubMed:
  163. Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9: 20891-20907. PubMed:
  164. Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel) 2019; 11: 769. PubMed:
  165. Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019; 10: 1205. PubMed:
  166. Zhang J, Zheng H, Diao Y. Natural killer cells and current applications of chimeric antigen receptor-modified NK-92 cells in tumor immunotherapy. Int J Mol Sci. 2019; 20: 317. PubMed:
  167. Miller JS. Therapeutic applications: natural killer cells in the clinic. Hematology Am Soc Hematol Educ Program. 2013; 2013: 247-253. PubMed:
  168. Bachanova V, Miller JS. NK cells in therapy of cancer. Crit Rev Oncog. 2014; 19: 133-141. PubMed:
  169. Al-Anazi KA. The rising role of natural killer cells in patients with malignant hematological disorders and in recipients of hematopoietic stem cell transplantation. J Stem Cell Ther Transplant. 2019; 3: 23-27.
  170. Chan YLT, Zuo J, Inman C, Croft W, Begum J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018; 48: 316-329. PubMed:
  171. Carlsten M, Korde N, Kotecha R, Reger R, Bor S, et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK Cells in patients with myeloma. Clin Cancer Res. 2016; 22: 5211-5222. PubMed:
  172. Gabriel IH, Sergeant R, Szydlo R, Apperley JF, DeLavallade H, et al. Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood. 2010; 116: 2033-2039. PubMed:
  173. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017; 25: 1769-1781. PubMed:
  174. Hoteit R, Bazarbachi A, Antar A, Salem Z, Shammaa D, et al. KIR genotype distribution among patients with multiple myeloma: Higher prevalence of KIR 2DS4 and KIR 2DS5 genes. Meta Gene. 2014; 2: 730-736. PubMed:
  175. Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, et al. Restoring natural killer cell immunity against multiple myeloma in the era of new drugs. Front Immunol. 2017; 8: 1444. PubMed:
  176. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012; 120: 4324-4333. PubMed:
  177. Mahaweni NM, Bos GMJ, Mitsiades CS, Tilanus MGJ, Wieten L. Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions. Cancer Immunol Immunother. 2018; 67: 861-872. PubMed:
  178. Mahaweni NM, Ehlers FAI, Bos GMJ, Wieten L. Tuning natural killer cell anti-multiple myeloma reactivity by targeting inhibitory signaling via KIR and NKG2A. Front Immunol. 2018; 9: 2848. PubMed:
  179. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005; 105: 251-258. PubMed:
  180. Sarkar S, van Gelder M, Noort W, Xu Y, Rouschop KM, et al. Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunol Immunother. 2015; 64: 951-63. PubMed:
  181. Gao M, Gao L, Yang G, Tao Y, Hou J, et al. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism. Acta Biochim Biophys Sin (Shanghai). 2014; 46: 597-604.  PubMed:
  182. Mohyuddin GR, Qazilbash MH. The therapeutic role of natural killer cells in multiple myeloma. Adv Cell Gene Ther. 2019; 2: 49.
  183. Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, et al. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother. 2015; 38: 24-36. PubMed:
  184. Shah N, Li L, McCarty J, Kaur I, Yvon E, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017; 177: 457-466. PubMed:
  185. Kröger N, Shaw B, Iacobelli S, Zabelina T, Peggs K, et al. Clinical Trial Committee of the British Society of Blood and Marrow Transplantation and the German Cooperative Transplant Group. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol. 2005; 129: 631-643. PubMed:
  186. Shi J, Tricot G, Szmania S, Rosen N, Garg TK, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol. 2008; 143: 641-653. PubMed:
  187. Nijhof IS, Lammerts van Bueren JJ, van Kessel B, Andre P, Morel Y, et al. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica. 2015; 100: 263-268. PubMed:
  188. Nahi H, Chrobok M, Gran C, Lund J, Gruber A, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019; 14: e0211927. PubMed:
  189. Besson L, Charrier E, Karlin L, Allatif O, Marçais A, et al. One-year follow-up of natural killer cell activity in multiple myeloma patients treated with adjuvant lenalidomide therapy. Front Immunol. 2018; 9: 704. PubMed:
  190. Yang G, Gao M, Zhang Y, Kong Y, Gao L, et al. Carfilzomib enhances natural killer cell-mediated lysis of myeloma linked with decreasing expression of HLA class I. Oncotarget. 2015; 6: 26982-26994. PubMed:
  191. Korde N, Carlsten M, Lee MJ, Minter A, Tan E, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014; 99: 81-83. PubMed:
  192. Wang Y, Lv B, Li K, Zhang A, Liu H. Adjuvant immunotherapy of dendritic cells and cytokine-induced killer cells is safe and enhances chemotherapy efficacy for multiple myeloma in China: a meta-analysis of clinical trials. Drug Des Devel Ther. 2017; 11: 3245-3256. PubMed:
  193. Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014; 20: 896-899.  PubMed:
  194. Skerget M, Skopec B, Zver S. Repopulation of lymphocytes and natural killer cells on day 15 following first autologous stem cell transplantation in myeloma patients correlates with the number of reinfused lymphocytes and natural killer T cells in the autologous graft. Blood. 2016; 128: 5820.
  195. Dulphy N, Chrétien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, et al. Underground adaptation to a hostile environment: acute myeloid leukemia vs. natural killer cells. Front Immunol. 2016; 7: 94. PubMed:
  196. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014; 99: 836-847. PubMed:
  197. Marin V, Pizzitola I, Agostoni V, Attianese GM, Finney H, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica. 2010; 95: 2144-2152. PubMed:
  198. Skaik Y, Vahlsing S, Goudeva L, Eiz-Vesper B, Battermann A, et al. Secreted β3-integrin enhances natural killer cell activity against acute myeloid leukemia cells. PLoS One. 2014; 9: e98936. PubMed:
  199. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016; 8: 357. PubMed:
  200. Bao X, Wang M, Zhou H, Zhang H, Wu X, et al. Donor killer immunoglobulin-like receptor profile Bx1 imparts a negative effect and centromeric B-specific gene motifs render a positive effect on standard-risk acute myeloid leukemia/myelodysplastic syndrome patient survival after unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016; 22: 232-239. PubMed:
  201. Yahng SA, Jeon YW, Yoon JH, Shin SH, Lee SE, et al. Negative impact of unidirectional host-versus-graft killer cell immunoglobulin-like receptor ligand mismatch on transplantation outcomes after unmanipulated haploidentical peripheral blood stem cell transplantation for acute myeloid leukemia. Biol Blood Marrow Transplant. 2016; 22: 316-323. PubMed:
  202. Parisi S, Lecciso M, Ocadlikova D, Salvestrini V, Ciciarello M, et al. The more, the better: “do the right thing” for natural killer immunotherapy in acute myeloid leukemia. Front Immunol. 2017; 8: 1330. PubMed:
  203. Holubova M, Leba M, Gmucova H, Caputo VS, Jindra P, et al. Improving the clinical application of natural killer cells by modulating signals signal from target cells. Int J Mol Sci. 2019; 20: E3472. PubMed:
  204. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007; 110: 433-440. PubMed:
  205. Cooley S, McCullar V, Wangen R, Bergemann TL, Spellman S, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood. 2005; 106: 4370-4376. PubMed:
  206. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014; 123: 3855-3863. PubMed:
  207. Cooley S, He F, Bachanova V, Vercellotti GM, DeFor TE, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019; 3: 1970-1980. PubMed:
  208. Jardine L, Hambleton S, Bigley V, Pagan S, Wang XN, et al. Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands. Leuk Lymphoma. 2013; 54: 167-173. PubMed:
  209. Fei F, Lim M, George AA, Kirzner J, Lee D, et al. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells. Leukemia 2015; 29: 788-797. PubMed:
  210. Mizia-Malarz A, Sobol-Milejska G. NK cells as possible prognostic factor in childhood acute lymphoblastic leukemia. Dis Markers. 2019; 2019: 3596983. PubMed:
  211. Sullivan EM, Jeha S, Kang G, Cheng C, Rooney B, et al. NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease. Clin Cancer Res. 2014; 20: 5986-5994. PubMed:
  212. Torelli GF, Peragine N, Raponi S, Pagliara D, De Propris MS, et al. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica. 2014; 99: 1248-1254. PubMed:
  213. Lelaidier M, Dìaz-Rodriguez Y, Cordeau M, Cordeiro P, Haddad E, et al. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. Oncotarget. 2015; 6: 29440-29455. PubMed:
  214. Brentjens RJ. Cellular therapies in acute lymphoblastic leukemia. Curr Opin Mol Ther. 2009; 11: 375-382. PubMed:
  215. Liu LL, Béziat V, Oei VYS, Pfefferle A, Schaffer M, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017; 5: 654-665. PubMed:
  216. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia. Oncol Rep. 2019; 41: 2625-2635. PubMed:
  217. Chen CI, Koschmieder S, Kerstiens L, Schemionek M, Altvater B, et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia. 2012; 26: 465-474. PubMed:
  218. Ilander M, Olsson-Strömberg U, Schlums H, Guilhot J, Brück O, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017; 31: 1108-1116. PubMed:
  219. Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 2013; 121: 3658-3665. PubMed:
  220. MacFarlane AW, Jillab M, Smith MR, Katherine Alpaugh R, et al. Natural killer cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature KIR3DL1+ subset. Blood. 2014; 124: 3318.
  221. McWilliams EM, Mele JM, Cheney C, Timmerman EA, Fiazuddin F, et al. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunology. 2016; 5: e1226720. PubMed:
  222. Klanova M, Oestergaard MZ, Trněný M, Hiddemann W, et al. Prognostic impact of natural killer cell count in follicular lymphoma and diffuse large B-cell lymphoma patients treated with immunochemotherapy. Clin Cancer Res. 2019; 25: 4634-4643. PubMed:
  223. Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, et al. A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front Immunol. 2019; 10: 1943. PubMed:
  224. Sarkar S, Sabhachandani P, Ravi D, Potdar S, Purvey S, et al. Dynamic analysis of human natural killer cell response at single-cell resolution in B-cell non-Hodgkin lymphoma. Front Immunol. 2017; 8: 1736. PubMed:
  225. Boulassel MR, Al Qarni Z, Burney I, Khan H, Al-Zubaidi A, et al. Levels of regulatory T cells and invariant natural killer cells and their associations with regulatory B cells in patients with non-Hodgkin lymphoma. Mol Clin Oncol. 2018; 9: 677-682. PubMed:
  226. Hus I, Bojarska-Junak A, Kamińska M, Dobrzyńska-Rutkowska A, et al. Imbalance in circulatory iNKT, Th17 and T regulatory cell frequencies in patients with B-cell non-Hodgkin’s lymphoma. Oncol Lett. 2017; 14: 7957-7964. PubMed:
  227. Kohrt HE, Thielens A, Marabelle A, Sagiv-Barfi I, Sola C, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood. 2014; 123: 678-86. PubMed:
  228. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 2018; 131: 1809-1819. PubMed:
  229. Alinari L. Awakening exhausted NK cells in lymphoma. Blood. 2019; 131: 1768-1769. PubMed:
  230. Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma. Front Immunol. 2018; 9: 267.  PubMed:
  231. Aldinucci D, Borghese C, Casagrande N. Formation of the immunosuppressive microenvironment of classic Hodgkin lymphoma and therapeutic approaches to counter it. Int J Mol Sci. 2019; 20: 2416. PubMed:
  232. Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017; 8: 465. PubMed:
  233. Palmer JM, Rajasekaran K, Thakar MS, Malarkannan S. Clinical relevance of natural killer cells following hematopoietic stem cell transplantation. J Cancer. 2013; 4: 25-35. PubMed:
  234. Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood. 2018; 131: 1053-1062. PubMed:
  235. Pical-Izard C, Crocchiolo R, Granjeaud S, Kochbati E, Just-Landi S, et al. Reconstitution of natural killer cells in HLA-matched HSCT after reduced-intensity conditioning: impact on clinical outcome. Biol Blood Marrow Transplant. 2015; 21: 429-39. PubMed:
  236. Hattori N, Saito B, Sasaki Y, Shimada S, Murai S, et al. Status of natural killer cell recovery in day 21 bone marrow after allogeneic hematopoietic stem cell transplantation predicts clinical outcome. Biol Blood Marrow Transplant. 2018; 24: 1841-1847. PubMed:
  237. Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015; 125: 784-792. PubMed:
  238. Chen YB, Efebera YA, Johnston L, Ball ED, Avigan D, et al. Increased Foxp3+Helios+regulatory T cells and decreased acute graft-versus-host disease after allogeneic bone marrow transplantation in patients receiving sirolimus and RGI-2001, an activator of invariant natural killer T cells. Biol Blood Marrow Transplant. 2017; 23: 625-634. PubMed:
  239. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295: 2097-2100.     PubMed:
  240. Björklund AT, Schaffer M, Fauriat C, Ringdén O, Remberger M, et al. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood. 2010; 115: 2686-2694. PubMed:
  241. Haas P, Loiseau P, Tamouza R, Cayuela JM, Moins-Teisserenc H, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011 20; 117: 1021-1029. PubMed:
  242. Zhou H, Bao X, Wu X, Tang X, Wang M, et al. Donor selection for killer immunoglobulin-like receptors B haplotype of the centromeric motifs can improve the outcome after HLA-identical sibling hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20: 98-105. PubMed:
  243. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007; 109: 5058-5061. PubMed:
  244. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018; 131: 247-262. PubMed:
  245. Wang Y, Wu DP, Liu QF, Xu LP, Liu KY, et al. Low-dose post-transplant cyclophosphamide and anti-thymocyte globulin as an effective strategy for GVHD prevention in haploidentical patients. J Hematol Oncol. 2019; 12: 88. PubMed:
  246. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010; 28: 955-959. PubMed:
  247. Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 2013; 48: 433-438. PubMed:
  248. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005; 105: 4135-4142. PubMed:
  249. Chang YJ, Zhao XY, Huang XJ. Immune reconstitution after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20: 440-449. PubMed:
  250. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017; 130: 1857-1868. PubMed:
  251. Jang JE, Hwang DY, Chung H, Kim SJ, Eom JI, et al. Early cytomegalovirus reactivation and expansion of CD56bright CD16dim/-DNAM1+ natural killer cells are associated with antileukemia effect after haploidentical stem cell transplantation in acute leukemia. Biol Blood Marrow Transplant. 2019; 25: 2070-2078.
  252. Ando T, Suzuki T, Ishiyama Y, Koyama S, Tachibana T, et al. Impact of cytomegalovirus reactivation and natural killer reconstitution on outcomes after allogeneic hematopoietic stem cell transplantation: a single-center analysis. Biol Blood Marrow Transplant. 2019; 19: 30639-30641. PubMed:
  253. Locatelli F, Pende D, Falco M, Della Chiesa M, Moretta A. NK cells mediate a crucial graft-versus-leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol. 2018; 39: 577-590. PubMed:
  254. Casorati G, de Lalla C, Dellabona P. Invariant natural killer T cells reconstitution and the control of leukemia relapse in pediatric haploidentical hematopoietic stem cell transplantation. Oncoimmunology. 2012; 1: 355-357. PubMed:
  255. Sobecks RM, Wang T, Askar M, Gallagher MM, Haagenson M, et al. Impact of KIR and HLA genotypes on outcomes after reduced-intensity conditioning hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015; 21: 1589-1596. PubMed:
  256. Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, et al. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biol Blood Marrow Transplant. 2009; 15: 580-588. PubMed:
  257. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell. 2018; 172: 534-548. PubMed:
  258. Dyck L, Lynch L. New job for NK cells: architects of the tumor microenvironment. Immunity. 2018; 48: 9-11. PubMed:
  259. Böttcher JP, Bonavita E, Chakravarty P, Blees H, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172: 1022-1037.e14. PubMed:
  260. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015; 47: e141. PubMed:
  261. Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018; 9: 283. PubMed:
  262. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017; 32: 135-154. PubMed:
  263. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 2015; 6: 578. PubMed:
  264. Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014; 26: 161-172. PubMed:
  265. Tian X, Wei F, Wang L, Yu W, Zhang N, et al. Herceptin enhances the antitumor effect of natural killer cells on breast cancer cells expressing human epidermal growth factor receptor-2. Front Immunol. 2017; 8: 1426. PubMed:
  266. Oh E, Min B, Li Y, Lian C, Hong J, et al. Cryopreserved human natural killer cells exhibit potent antitumor efficacy against orthotopic pancreatic cancer through efficient tumor-homing and cytolytic ability (running title: cryopreserved NK cells exhibit antitumor effect). Cancers (Basel). 2019; 11: E966. PubMed:
  267. Sun Y, Yao Z, Zhao Z, Xiao H, Xia M, et al. Natural killer cells inhibit metastasis of ovarian carcinoma cells and show therapeutic effects in a murine model of ovarian cancer. Exp Ther Med. 2018; 16: 1071-1078. PubMed:
  268. Kuçi S, Rettinger E, Voss B, Weber G, Stais M, et al. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation. Haematologica. 2010; 95: 1579-1586. PubMed:
  269. Merker M, Pfirrmann V, Oelsner S, Fulda S, Klingebiel T, et al. Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget. 2017; 8: 66137-66153. PubMed:
  270. Yu M, Luo H, Fan M, Wu X, Shi B, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther. 2018; 26: 366-378. PubMed:
  271. Du Y, Wei Y. Therapeutic potential of natural killer cells in gastric cancer. Front Immunol. 2019; 9: 3095. PubMed:
  272. Zhang L, Mu Y, Zhang A, Xie J, Chen S, et al. Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a meta-analysis of 29 trials involving 2,610 patients. Oncotarget. 2017; 8: 45164-45177. PubMed:
  273. Tanaka Y, Nakazawa T, Nakamura M, Nishimura F, Matsuda R, et al. Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro. PLoS One. 2019; 14: e0212455. PubMed:
  274. Genßler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology. 2015; 5: e1119354. PubMed:
  275. Murakami T, Nakazawa T, Natsume A, Nishimura F, Nakamura M, et al. Novel human NK cell line carrying CAR targeting EGFRvIII induces antitumor effects in glioblastoma cells. Anticancer Res. 2018; 38: 5049-5056. PubMed:
  276. Huang BY, Zhan YP, Zong WJ, Yu CJ, Li JF, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One. 2015; 10: e0134715. PubMed:
  277. Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Front Immunol. 2018; 9: 1345. PubMed:
  278. Gras Navarro A, Espedal H, Joseph JV, Trachsel-Moncho L, Bahador M, et al. Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival. Cancers (Basel). 2019; 11: E996. PubMed:
  279. Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, et al. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. Int J Cancer. 2014; 134: 2199-2210. PubMed:
  280. Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med. 2012; 18: 1827-1834. PubMed:
  281. Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res. 2018; 30: 173-196. PubMed:
  282. Kimpo MS, Oh B, Lee S. The role of natural killer cells as a platform for immunotherapy in pediatric cancers. Curr Oncol Rep. 2019; 21: 93. PubMed:
  283. Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018; 14: e1007405. PubMed:
  284. Welsh RM, Waggoner SN. NK cells controlling virus-specific T cells: Rheostats for acute vs. persistent infections. Virology. 2013; 435: 37-45. PubMed:
  285. Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev. 2013; 255: 68-81. PubMed:
  286. Keawvichit R, Khowawisetsut L, Lertjuthaporn S, Tangnararatchakit K, Apiwattanakul N, Yoksan S, et al. Differences in activation and tissue homing markers of natural killer cell subsets during acute dengue infection. Immunology. 2018; 153: 455-465. PubMed:
  287. De Pelsmaeker S, Romero N, Vitale M, Favoreel HW. Herpesvirus evasion of natural killer cells. J Virol. 2018; 92: 105-117. PubMed:
  288. Campbell TM, McSharry BP, Steain M, Ashhurst TM, Slobedman B, et al. Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathog. 2018; 14: e1006999. PubMed:
  289. Hammer Q, Romagnani C. About training and memory: NK-cell adaptation to viral infections. Adv Immunol. 2017; 133: 171-207. PubMed:
  290. Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016; 16: 15-23. PubMed:
  291. Herrera L, Salcedo JM, Santos S, Vesga MÁ, Borrego F, Eguizabal C. OP9 feeder cells are superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front Immunol. 2017; 8: 755. PubMed:
  292. Grossenbacher SK, Aguilar EG, Murphy WJ. Leveraging natural killer cells for cancer immunotherapy. Immunotherapy. 2017; 9: 487-497. PubMed:
  293. Nayyar G, Chu Y, Cairo MS. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front Oncol. 2019; 9: 51. PubMed: