Research Article

Detection of Clavibacter michiganensis subsp. michiganensis in tomato and chili seeds and farming area of Sinaloa, Mexico

Ruiz Alvarado Cristina*, Soto Ortiz Roberto, Cervantes Diaz Lourdes, Nunez Ramirez Fidel, Celaya-Michel Hernán and Rueda Puente Edgar O

Published: 06/08/2018 | Volume 2 - Issue 2 | Pages: 044-054

Abstract

Phytosanitary inspectors play an important role in diagnosing diseases in foreign plant material. However, some deficiencies have been detected in the detectionc ausing the entrance of many microorganisms.Therefore, it was of great interest to detect the presence of Clavibacter michiganensis subsp. michiganensis (Cmm) in foreign tomato and chili seed in the agricultural area of Sinaloa, Mexico, besides the growth and cell density of Cmm was evaluated in different selective media under continuous illumination and photoperiod. The results indicate that seeed of 35 varieties of tomatoes was collected; while for Chili seed were 18. This study was supported by farmers (225) which represent 79% of all growers and 32 business engaged in the sale of agro-supplies, provided seeds of varieties and hybrids. Those growers are from six areas (Culiacan, El Tamarindo, Navolato, Culiacan, El dorado and Badiraguato). For detection of Cmm in tomato seed, from 35, only four was variability considering Immunochromatography and ELISA techniques; however, considering chemical and physiological test, the result was negative. Similar results were in 18 varietes of chili seed, where eight showed variability to detect Cmm, and negative by chemical and physiological test. According to the growth and cell density of Cmm, the optimal medium was YDC under pH stable and continuous light conditions. It is recommended to consider the fusion of diagnostic techniques in the emission of a result.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001019 Cite this Article

References

  1. SIAP. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Por Estado y Cultivo. Sistema Integral de Información Agroalimentaria y Pesquera. 2017. Ref.: https://goo.gl/Divcbp
  2. CAADES. Cierre de ciclo de hortalizas. Confederación de Asociaciones Agrícolas del Estado de Sinaloa. 2017; 3: 10-13.
  3. Messiaen CM. Enfermedades de las hortalizas. Mundi prensa. Primera ed. México. 2005; 575.
  4. Nandi M, Macdonald J, Liu P, Weselowski B, Yuan ZC. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. Mol Plant Pathol. Ref.: https://goo.gl/RPcCvm
  5. Eichenlaub R, Gartemann KH. The Clavibacter michiganensis subspecies: Molecular investigation of Gram-positive bacterial plant pathogens. Annu Rev Phytopathol. 2011; 49: 445-464. Ref.: https://goo.gl/SUjKSH
  6. Rueda PE. Cuando las enfermedades traspasan las fronteras: México un caso.  Congreso Mundial de Trichoderma y Fitopatología. Costa Rica 19 mayo de 2008.
  7. Rueda PE, Medina D, Alvarado M, García O, Tarazón H, et al. Detección y caracterización de Clavibacter michiganensis subsp. sepedonicus en papa en el estado de Sonora, México. Tropical and Subtropical Agroecosystems. 2009; 10: 13-20.
  8. López EJA, Huerta-Aldaz N, EstradaDurán GC, Salgado MP, Re Vega E, et al. Effect of salinity on the growth of Isochrysis sp. under static culture conditions. Biotechnology. 2004; 3: 10-15. Ref.: https://goo.gl/tdesed
  9. Rueda-Puente EO, Tarazón-Herrera MA, García-Hernández JL, Murillo-Amador B, Holguín-Peña RJ, et al. Production of antibodies for bacterial fruit blotch [Acidovorax avenae pv. citrulli (Schaad, Sowell, Goth, Colwell y Webb) Willems, Goor, Thielemans, Gillis, Kersters y De Ley] of watermelon (Citrullus vulgaris Schrad.) in the region Comarca Lagunera, Mexico. Revista Mexicana de Fitopatología. 2006; 24: 129-135. Ref.: https://goo.gl/8Fkn76
  10. Borboa Flores J, Rueda Puente EO, Acedo Félix E,  Ponce JF, Cruz M, et al. Detection of Clavibacter michiganensis subspecies michiganensis in tomato of the state of Sonora, Mexico. Revista Fitotecnia Mexicana. Bravo, Aldunate MyAP 1993. Monografías Hortícolas. CORFO. PUCCH. Santiago. 2009; 136. Ref.: https://goo.gl/G9voEr
  11. SAS Institute. SAS/STAT user’s guide, Version 6.12 SAS, Institute, Cary, NC, USA. 2001.
  12. Osuna G, Rodríguez yF. Distrito de Desarrollo Rural Culiacán. ddr004@sin.sagarpa.gob.mx. carret. a Navolato km. 7.5 Bachigualato, Culiacán, Sinaloa. CP. 80140. SAGARPA-Culiacán. 2017; 120.
  13. AGDIA. 2017. Ref.: https://goo.gl/n9pEZj
  14. Davis MJ. Taxonomy of plant-pathogenic coryneform bacteria. Annual Review of Phytopathology. 1996; 24: 115-140.  Ref.: https://goo.gl/VmmhPQ
  15. Rodríguez MML. Manual para la Identificación de Bacterias Fitopatogenas, 2nd Ed. Universidad Autónoma de Chapingo. 2001; 80-96.
  16. Rodríguez RR, Rodríguez JMT. Medina SJA. Cultivo moderno del tomate. Segunda Reimpresión. Ed. Mundi-Prensa. Madrid, España. 2001; 15-19. Ref.: https://goo.gl/9Ai1sy
  17. Schaad NW, Jones JB, Chun W. Laboratory Guide for Identification of Plant Pathogenic bacteria, APS Press, USA. 2001; 1-15.
  18. Sharabani G, Manulis-Sasson S, Borenstein M, Shulhani R, Lofthouse M, et al. The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathol. 2013; 62: 578-586. Ref.: https://goo.gl/paVzpv
  19. Sharabani G, Manulis-Sasson S, Chalupowicz L, Borenstein M, Shulhani R, et al. Temperature at the early stages of Clavibacter michiganensis subsp. michiganensis infection affects bacterial canker development and virulence gene expression. Plant Pathol. 2014; 63: 1119-1129. Ref.: https://goo.gl/en56ZH
  20. Fatmi M, Schaad NW. Survival of Clavibacter michiganensis ssp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol. 2002; 51: 149-154. Ref.: https://goo.gl/LnfBAe
  21. Lou LX, Walters BH, Liu XL, Li JQ.  Quantification of variable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a rad-time PCR assay. Plant Pathol. 2007; 135: 1365-3059.
  22. Borboa  FJ. Detección e incidencia de Clavibacter michiganensis subespecie michiganensis en Lycopersicon esculentum Mill. en el estado de sonora, México y evaluación del efecto bactericida de aceites esenciales. Tesis de Posgrado. Universidad Autónoma de Baja California. Mexicali, Baja California, México. 2009; 80.
  23. Thyr BD, Samuel MJ, Brown PG. New solanaceous host records for Corynebacterium michiganense. Plant Disease Reporter. 2003; 59: 595-598. Ref.: https://goo.gl/ny258v
  24. Sen Y, van der Wolf J, Visser RGF, van Heusden S. Bacterial canker of tomato: Current knowledge of detection, management, resistance, and interactions. Plant Dis. 2015; 99: 4-13. Ref.: https://goo.gl/qBm7Mm
  25. Mansour MMF, Salama KHA. Cellular basis of salinity tolerance in plants. Environ Exp Bot. 2004; 52: 113-122. Ref.: https://goo.gl/4xAzg5
  26. Thessen AE, Dortchm Q, Parson ML. Effect of salinity of Pseudo-nitzschia species growth and distribution. J Phycol. 2005; 41: 21-29. Ref.: https://goo.gl/taFiw2
  27. Rosales NO, Morales JyR. Influencia de la salinidad sobre crecimiento y composición bioquímica de la Clavibacter michiganensis ssp. michiganensis. Ciencias Marinas. 2005; 31: 349-355.
  28. Arroyo-Pacheco LE, Martínez-Baldenebro F. Producción de biomasa y composición química de dos especies de microalgas a diferentes salinidades. Tesis de Licenciatura. Universidad de Sonora. Hermosillo, Sonora, México. 1994; 78.
  29. Castro AS, Tavano G. Growth and biochemical composition of the diatome Chaetocerus under different temperature, salinity and dioxide carbon levels. Aquaculture. 2005; 246: 405-412. Ref.: https://goo.gl/EDwUVP
  30. Tzovenis I, De Pauw N, Sorgeloos P. Optimization of T-ISO biomass production rich in essential fatty acids. Aquaculture. 2005; 203-222.
  31. Brown MR, Dunstan GA, Norwood SJ. Effects of harvest stage on the biochemical composition of the diatome. Journal of Phycology. 1996; 32: 64-73. Ref.: https://goo.gl/eMVtN1
  32. Humprey GF. Photosynthetic characteristics under constant illumination and light dark regimes. Journal of Experimental Marine Biology and Ecology. 1979; 40: 63-70. Ref.: https://goo.gl/nEE4nL
  33. Gitaitsis RD, Sasser MJ, Beaver RW, McInnes TB, Stall RE. Pectolytic Xanthomonads in mixed infections with Pseudomonas syringae pv. syringae, P. syringae pv. tomato, and Xanthomonas campestris pv. vesicatoria in tomato and pepper transplants. Phytopathology. 1987; 77: 6ll-615. Ref.: https://goo.gl/VVfN1E  
  34. López EJA, Huerta-Aldaz N, EstradaDurán GC, Salgado MP, Re Vega E, et al. Effect of salinity on the growth of Isochrysis sp. under static culture conditions. Biotechnology. 2004; 3: 10-15. Ref.: https://goo.gl/tdesed
  35. Velázquez-Alcaraz TJ, Partida-Ruvalcaba L, Acosta-Villegas B, Ayala-Tafoya F. Producción de plantas de tomate y chile aplicando paclobutrazol al follaje. Universidad y Ciencia. 2008; 24: 21-28. Ref.: https://goo.gl/SmQAMf