Research Article

Studies of Grafts in vegetables, an alternative for agricultural production under stress conditions: Physiological responses

Jose Bernal Alzate, Edgar Omar Rueda Puente*, Onecimo Grimaldo Juarez, Daniel Gonzalez Mendoza, Lourdes Cervantes Diaz and Alejandro García Lopez

Published: 01/03/2018 | Volume 2 - Issue 1 | Pages: 006-0014


Vegetable production by grafting is a technique which it has made possible to resume agricultural soils which previously could not be produced due to stress generated by various abiotic factors, like a lack of water,stress by high or low temperatures, and or heavy metal contamination, among them. It has been documented and defined a number of graftings which they are tolerant to different factors; however, when it comes to auscultating information related to understand the molecular responses and observe what are the biochemical changes and physiological responses of grafted plants, it is dispersed. The current paper attempts to provide basic information documented on technique, addressing the molecular, biochemical and physiological responses, and thus get a clear perspective on the use of grafts, making this practice be used with most frequently by all its advantages.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001014 Cite this Article


  1. Lockard RG. Effect of Apple Rootstocks and Length and Type of Interstock on Leaf Nutrient Levels. J Hortic Sci. 1976; 51: 289-296. Ref.:
  2. Tateishi K. Grafting watermelon onto pumpkin. J Japanese Horticulture (Nihon‐Engei Zasshi). 1927; 39: 5‐8. Ref.:
  3. Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos-Echeverria P, et al. Current status of vegetable grafting: Difussion, grafting techniques, automation. Scientia Horticulturae. 2010; 127: 93-105. Ref.:
  4. OCDE/FAO (2013), OCDE-FAO Perspectivas Agrícolas 2013-2022, Texcoco, Estado de México, Universidad Autónoma Chapingo.
  5. Louws FJ, Rivard CL, Kubota C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic. 2010; 127: 127-146. Ref.:
  6. Luna-Flores W, Estrada-Medina H, Jiménez-Osornio JJM, Pinzón-López LL. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana. 2012; 30: 343-353. Ref.:
  7. Moreno L. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía colombiana. 2009; 27: 179-191. Ref.:
  8. Penella C, Landi M, Guidi L, Nebauer S, Pellegrini E, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetich performance and sinks strength. J plant Physiology. 2016; 193: 1-11. Ref.:
  9. Sánchez-Rodríguez E, Rubio-Wilhelmi M, Blasco B, Leyva R, Romero L, et al. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under wáter stress. Plant Science. 2012; 189: 89-96. Ref:
  10. Kubota C, Mc Clure M, Kokalis-Burelle N, Bausher M,  Rosskopf E. Vegetable grafting: History, use and current technology status in North America. HortScience. 2008; 6: 1664-1669. Ref.:
  11. Bletsos F, Thanassoulopoulos C, Roupakias D. Effect of grafting on growth, yield, and verticillium wilt of eggplant. HortScience. 2003; 2: 183-186. Ref.:
  12. Rivard C, O’Connell S, Peet M, Louws F. Grafting tomato with interspecific Rootstok to manage diseases caused by Sclerotium rolfscii and southern root-knot nematode. Plant disease. 2010; 8: 1015-1021. Ref.:
  13. Rivard C, O’Connell S, Peet M, Welker R,  Louws F. Grafting tomato to manage bacteril wolt causaed by Ralstonia solanacearum in the southeastern United States. Plant disease. 2012; 7: 973-978.
  14. Keinath A, Haseell R. Control of fusarium wilt of watermelon by grafting onyo bottlegourd of interspecific hybrid squash despite colonization of grafts by Fusarium. Plants disease. 2014; 2: 255-266. Ref.:
  15. Kleinhenz MD. Major Factors in Preparing Grafted Vegetable Plants Successfully. The Ohio State Univ., Ohio Agricultural Res. Dev. Ctr. 2011.
  16. Ozores-Hampton M. Healing chamber for grafted vegetables seedlings in Florida. University of Florida IFAS. 2013.
  17. Dawson R. Acumulation of nicotine in reciprocal grafts of tomato and tobacco. American Journal of botany. 1942; 29: 66-71. Ref.:
  18. Khah E, Kakava E, Mavromatis A, Chachalis D, Goulas C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum  Mill.) in greenhouse and open field. Journal of Applied Horticulture. 2006; 8: 3-7. Ref.:
  19. Alan Ö, Özdemir N,  Günen Y. Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy. 2007; 2: 362-365. Ref.:
  20. Mohamed F, El-Hamed K, Elwhan M, Hussien M. Impact of grafting on watermelon growth, fruit yield and quality. Vegetable Research Bulletin. 2012; 76: 99-118. Ref.:
  21. Savvas D, Colla G, Rouphael Y, Schwarz D. Ameloration of heavy metal and nutriwent stress in fruit vegetables by grafting. Scientia Horticulturae. 2010; 2: 156-161. Ref.:
  22. Di Gioia F, Signore A. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience. 2013; 7: 855-862. Ref.:
  23. Sánchez-Rodríguez E, Romero L, Ruiz JM. Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation.  J Plant Growth Regul. 2013; 32: 831-842. Ref.:
  24. Savvas D, Ntatsi G, Barouchas P. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd of Ni stress. Scientia Horticulturae. 2013; 149: 86-96. Ref.:
  25. Chaves M, Maroco J, Pereira. Understanding plant responses to drought -from genes to the whole plant. Funct Plant Biol. 2003; 30: 239-264. Ref.:
  26. Blum A. Drought resistance, water use-efficiency, and yield potential -are they compatible, dissonant or mutual exclusive? Austr J Agric Res. 2005; 56: 1159-1168. Ref.:
  27. Bernal-Alzate J, Grimaldo-Juarez O, González-Mendoza D, Cervantes-Díaz L, Rueda-Puente E, et al. El injerto como alternativa para mejorar el rendimiento en la producción de frijol ejotero (Phaseolus vulgaris L.). IDESIA. 2016; 2: 43-46. Ref.:
  28. Proebsting W, Hedden P, Lewis M, Croker S, Proebsting L. Gibberellin concentration and transport in genetic lines of pea. Plant Physiol. 1992; 100: 1354-1360. Ref.:
  29. Bulley S, Wilson F, Hedden P, Phillips A, Crokerm S, et al. Modification of gibberellin biosiynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnology Journal. 2005; 3: 215-223. Ref.:
  30. Kudo H, Harada T. A graft-transmissible RNA from Tomato Rootstock changes leaf morphology of potato scion. Hortscience. 2007; 2: 225-226. Ref.:
  31. Ohata Y. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica. 1991; 55: 91-99. Ref.:
  32. Taller J, Yagishita N, Hirata Y. Graft-induced variants as a source of novel characteristics in the breeding pepper (Capsicum annuum L.). Euphytica. 1999; 108: 73-78. Ref.:
  33. Hooijdonk B, Woolley D, Warrington I, Tustin S. Roostocks modify scion architecture, endogenous hormones and root growth of newly grafted ‘royal gala’ apple trees. J. Amer. Soc. Hort. Sci. 2011; 136: 93-102. Ref.:
  34. Sandalio L, Dalurzo H, Gimez M, Romero-Puertas M, Rio L. Cadmium-induced changes in growth and oxidative metabolism of pea plants, J. Exp. Bot. 2001; 52: 1297-1303. Ref.:  
  35. Saied A, Keutgen N, Noga G. Effects of NaCl stress on leaf growth, photosynthesis and ionic contents of strawberry cvs ‘Elsanta´and ‘Korona’. In: pardossi, A., Serra, G., F. (Eds.). International symposium on managing greenhouse crops in saline environment, International society of Horticultural Science. Pisa: 2003; 67-73.
  36. Chaves M, Flexas J, Pinhero C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany. 2009; 103: 551-560. Ref.:
  37. Yuang Y, Yu L, Wang L, Guo S. Bottle gourd grafts-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Journal pf plant Physiology. 2015; 187: 50-58. Ref.:  
  38. Rouphael Y, Cardarelli M, Rea E, Colla G. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid grafts. Photosyntheetica. 2009; 50: 180-188. Ref.:
  39. Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea Biol Plant. 2009; 53: 243-248. Ref.:
  40. Liu Z, Bie Z, Huang Y, Zhen A, Lei B, et al. Grafting onto Cucurbita moschata roostock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosybthetica. 2012; 50: 152-160. Ref.:
  41. Amaro A, Macedo A, Pereira A, Goto R, Ono E, et al. The use of graftinf to improve the net photosynthesis of cucumber. Theor exp. Plant Physiol. 2014; 26: 241-249.  Ref.:
  42. Liu Y, Qi Y, Bai M, Qi F, Xu Q, et al. Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon. Int J Biol Sci. 2011; 7: 1161-1170. Ref.:
  43. Qi Y, Li  L, Liu  F, Li D. Effects of grafting on photosynthesis characteristics, yield and sugar content in melon. J Shenyang Agr Univ. 2006; 37: 155-158. Ref.:
  44. Gonzalez C, Llosa J, Quijano A, Forner A. Roostock effects on leaf Photosynthesis in “Navelina” Trees grown in calcareous soil. HortScience. 2009; 44: 280-283. Ref.:
  45. Qinghai G, Wu Y, Jia S, Huang S, Lu X. Effect of rootstock on the growth, photosynthetic capacity And osmotic adjustment of eggplant seedlings under Chilling stress and recovery. Pak. J. Bot. 2016; 48: 461-467. Ref.:
  46. Jianlin W Y, Guirui F, Quanxiao J, Defeng Q, Hua W, et al. Responses of water use efficiency of 9 plant species to light and CO2 and their modeling. Acta Ecol. 2008; 28: 525-533. Ref.:
  47. Aloni B, Karni L, Deventurero G, Levin Z, Cohen R, et al. Physiological and biochemical changes at the grafts-scion interface in graft combinations between Cucurbita grafts and a melon scion. J. Hortic. Sci. Biotechnol. Ref.: 2008; 83: 777-783. Ref.:
  48. Irisarri P, Binczycki P, Errea P, Martens H J, Pina A. Oxidative stress associated with rootstockescion interactions in pear/quince combinations during early stages of graft development. J. Plant Physiol. 2015; 176: 25-35. Ref.:
  49. Xu Q, GHuo S, Li L, An Y, Shu S, et al. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plants physiology and biochemistry. 2016; 105: 21-28. Ref.:
  50. Desimone M, Henke A, Wagner E. Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol. 1996; 111: 789-796. Ref.:
  51. Liao L, Cao S, Rong Y, Wang Z. Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and molecular research. 2016; 15: 1-10. Ref.:
  52. Morinaga K, Ikeda F. The effects of several grafts on photosynthesis; distribution of photosynthetic product, and growth of young satsuma mandarin trees. J. Japan. Soc. Hort. Sci.1990; 59: 29-34. Ref.:
  53. Buchanan B, W Gruissem, Jones R. Biochemistry and molecular biology of plants. American Society of Plant Biologists, John Wiley & Sons, Inc. Somerset NJ. 2000. Ref.:
  54. Crété P, Leuenberger S, V A Iglesias, V Suarez, H Schob, et al. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J. 2001; 28: 493-501. Ref.:
  55. Palauqui J C, Elmayan T, Pollien J M, Vaucheret H. Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997; 15: 4738-4745. Ref.:
  56. Shaharuddin N, Han Y, Li H, Grierson D. The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS letters. 2006; 580: 6579-6586. Ref.:
  57. Wang S, Liu Z, Sun C, Shi Q, Yao Y, et al. Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. Journal of plant physiology. 2012; 169: 303-310. Ref.:
  58. Ntatsi G, Savvas D, Huntenburg K, Druege U, Hincha D, et al. A study on ABA involvement in the response of tomato suboptimal temperatura using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED. Enviromental and Experimental Botany. 2014; 97: 11-21.
  59. Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen J, et al. Physiological, biochemical and molecular responses of four prunus grafts submitted to drought stress. Tree physiology. 2013; 33: 1061-1075. Ref.:
  60. Miao B, Wen-ting C, Bing-yan X, Guo-shun Y. A novel strategy to enhance resistance to Cucumber mosaic virus in tomato by grafting to transgenic grafts. Journal of integrative agriculture. 2016; 15: 2040-2048. Ref.:
  61. Bletsos F, Olympios C. Grafts and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. The European journal of plant science and biotechnology. 2008; 2: 62-73.
  62. Spoustová P, Hýsková V, Müller K, Schnablová R, Ryslavá H, et al. Tobacco susceptibility to Potato virus YNTN infection is affected bygrafting and endogenous cytokinin content. Plant Science. 2015; 235: 25-36. Ref.:
  63. Vitale A, Rocco M, Arena S, Giuffrida F, Cassanitu C, et al. Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock.  Plant Physiology and biochemistry. 2014; 83: 207- 216. Ref.:
  64. Sánchez-Rodríguez, E Ruiz, J Ferreres, F Moreno, D. Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food chemistry. 2012; 134: 775-782. Ref.:
  65. Jiang F, Y X Liu, W Liu, N Zheng, H T Wang, et al. Relationship between root rot resistance and phenylaprapanoid metabolism in graft capsicum. China Veg. 2010; 8: 46-52. Ref.:
  66. Zhou B, Gao Y, Lin G, Fu Y. Relationship between disease resistance and electrolytic leakage, proline content and PAL activity in grafted eggplant (in Chinese). Acta Hort Sinica 1998; 25: 300-302. Ref.:
  67. Edelstein M, Cohen R, Burger Y, Shriber S, Pivonia S, et al. Integrated management of sudden wilt of melons, caused by Monosporascus cannonballus, using grafting and reduced rate of methyl bromide. Plant Dis. 1999; 83: 1142-1145. Ref.:
  68. Franks. P, Casson S. Connecting stomatal development and physiology. New Phytol. 2014; 201: 1079-1082. Ref.:
  69. Jones H. Plants and microclimate: a Quantitative Approach to Environmental. Plant physiology, 3ra Edicion. Cambridge University Press London. 2014. Ref.:
  70. Rivard C, Sydorovych O, O’Connell S, Peet M, Louws F. An economic analysis of two grafted tomato transplant production systems in the United States. Horttechnology. 2010; 4: 794-803. Ref.: