Research Article

Studies of Grafts in vegetables, an alternative for agricultural production under stress conditions: Physiological responses

Jose Bernal Alzate, Edgar Omar Rueda Puente*, Onecimo Grimaldo Juarez, Daniel Gonzalez Mendoza, Lourdes Cervantes Diaz and Alejandro García Lopez

Published: 01/03/2018 | Volume 2 - Issue 1 | Pages: 006-0014

Abstract

Vegetable production by grafting is a technique which it has made possible to resume agricultural soils which previously could not be produced due to stress generated by various abiotic factors, like a lack of water,stress by high or low temperatures, and or heavy metal contamination, among them. It has been documented and defined a number of graftings which they are tolerant to different factors; however, when it comes to auscultating information related to understand the molecular responses and observe what are the biochemical changes and physiological responses of grafted plants, it is dispersed. The current paper attempts to provide basic information documented on technique, addressing the molecular, biochemical and physiological responses, and thus get a clear perspective on the use of grafts, making this practice be used with most frequently by all its advantages.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001014 Cite this Article

References

  1. Lockard RG. Effect of Apple Rootstocks and Length and Type of Interstock on Leaf Nutrient Levels. J Hortic Sci. 1976; 51: 289-296. Ref.: https://goo.gl/kuE7q5
  2. Tateishi K. Grafting watermelon onto pumpkin. J Japanese Horticulture (Nihon‐Engei Zasshi). 1927; 39: 5‐8. Ref.: https://goo.gl/jKnxRD
  3. Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos-Echeverria P, et al. Current status of vegetable grafting: Difussion, grafting techniques, automation. Scientia Horticulturae. 2010; 127: 93-105. Ref.: https://goo.gl/P93mPv
  4. OCDE/FAO (2013), OCDE-FAO Perspectivas Agrícolas 2013-2022, Texcoco, Estado de México, Universidad Autónoma Chapingo.
  5. Louws FJ, Rivard CL, Kubota C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic. 2010; 127: 127-146. Ref.: https://goo.gl/DvV4gA
  6. Luna-Flores W, Estrada-Medina H, Jiménez-Osornio JJM, Pinzón-López LL. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana. 2012; 30: 343-353. Ref.: https://goo.gl/QeE3su
  7. Moreno L. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía colombiana. 2009; 27: 179-191. Ref.: https://goo.gl/F1Zt4t
  8. Penella C, Landi M, Guidi L, Nebauer S, Pellegrini E, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetich performance and sinks strength. J plant Physiology. 2016; 193: 1-11. Ref.: https://goo.gl/MEhCMF
  9. Sánchez-Rodríguez E, Rubio-Wilhelmi M, Blasco B, Leyva R, Romero L, et al. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under wáter stress. Plant Science. 2012; 189: 89-96. Ref: https://goo.gl/AViWS9
  10. Kubota C, Mc Clure M, Kokalis-Burelle N, Bausher M,  Rosskopf E. Vegetable grafting: History, use and current technology status in North America. HortScience. 2008; 6: 1664-1669. Ref.: https://goo.gl/ytevSe
  11. Bletsos F, Thanassoulopoulos C, Roupakias D. Effect of grafting on growth, yield, and verticillium wilt of eggplant. HortScience. 2003; 2: 183-186. Ref.: https://goo.gl/5PMJiF
  12. Rivard C, O’Connell S, Peet M, Louws F. Grafting tomato with interspecific Rootstok to manage diseases caused by Sclerotium rolfscii and southern root-knot nematode. Plant disease. 2010; 8: 1015-1021. Ref.: https://goo.gl/JyVCfw
  13. Rivard C, O’Connell S, Peet M, Welker R,  Louws F. Grafting tomato to manage bacteril wolt causaed by Ralstonia solanacearum in the southeastern United States. Plant disease. 2012; 7: 973-978.
  14. Keinath A, Haseell R. Control of fusarium wilt of watermelon by grafting onyo bottlegourd of interspecific hybrid squash despite colonization of grafts by Fusarium. Plants disease. 2014; 2: 255-266. Ref.: https://goo.gl/TVJYcX
  15. Kleinhenz MD. Major Factors in Preparing Grafted Vegetable Plants Successfully. The Ohio State Univ., Ohio Agricultural Res. Dev. Ctr. 2011.
  16. Ozores-Hampton M. Healing chamber for grafted vegetables seedlings in Florida. University of Florida IFAS. 2013.
  17. Dawson R. Acumulation of nicotine in reciprocal grafts of tomato and tobacco. American Journal of botany. 1942; 29: 66-71. Ref.: https://goo.gl/byZMhm
  18. Khah E, Kakava E, Mavromatis A, Chachalis D, Goulas C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum  Mill.) in greenhouse and open field. Journal of Applied Horticulture. 2006; 8: 3-7. Ref.: https://goo.gl/tTkw3L
  19. Alan Ö, Özdemir N,  Günen Y. Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy. 2007; 2: 362-365. Ref.: https://goo.gl/bxbwcX
  20. Mohamed F, El-Hamed K, Elwhan M, Hussien M. Impact of grafting on watermelon growth, fruit yield and quality. Vegetable Research Bulletin. 2012; 76: 99-118. Ref.: https://goo.gl/of3LLz
  21. Savvas D, Colla G, Rouphael Y, Schwarz D. Ameloration of heavy metal and nutriwent stress in fruit vegetables by grafting. Scientia Horticulturae. 2010; 2: 156-161. Ref.: https://goo.gl/q3PcNM
  22. Di Gioia F, Signore A. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience. 2013; 7: 855-862. Ref.: https://goo.gl/dmX6YM
  23. Sánchez-Rodríguez E, Romero L, Ruiz JM. Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation.  J Plant Growth Regul. 2013; 32: 831-842. Ref.: https://goo.gl/fUHyJz
  24. Savvas D, Ntatsi G, Barouchas P. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd of Ni stress. Scientia Horticulturae. 2013; 149: 86-96. Ref.: https://goo.gl/7XBwkZ
  25. Chaves M, Maroco J, Pereira. Understanding plant responses to drought -from genes to the whole plant. Funct Plant Biol. 2003; 30: 239-264. Ref.: https://goo.gl/Umca4W
  26. Blum A. Drought resistance, water use-efficiency, and yield potential -are they compatible, dissonant or mutual exclusive? Austr J Agric Res. 2005; 56: 1159-1168. Ref.: https://goo.gl/zkxDLQ
  27. Bernal-Alzate J, Grimaldo-Juarez O, González-Mendoza D, Cervantes-Díaz L, Rueda-Puente E, et al. El injerto como alternativa para mejorar el rendimiento en la producción de frijol ejotero (Phaseolus vulgaris L.). IDESIA. 2016; 2: 43-46. Ref.: https://goo.gl/pZWyko
  28. Proebsting W, Hedden P, Lewis M, Croker S, Proebsting L. Gibberellin concentration and transport in genetic lines of pea. Plant Physiol. 1992; 100: 1354-1360. Ref.: https://goo.gl/TSzCDg
  29. Bulley S, Wilson F, Hedden P, Phillips A, Crokerm S, et al. Modification of gibberellin biosiynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnology Journal. 2005; 3: 215-223. Ref.: https://goo.gl/w2HBW6
  30. Kudo H, Harada T. A graft-transmissible RNA from Tomato Rootstock changes leaf morphology of potato scion. Hortscience. 2007; 2: 225-226. Ref.: https://goo.gl/in7stW
  31. Ohata Y. Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica. 1991; 55: 91-99. Ref.: https://goo.gl/Bi1J6J
  32. Taller J, Yagishita N, Hirata Y. Graft-induced variants as a source of novel characteristics in the breeding pepper (Capsicum annuum L.). Euphytica. 1999; 108: 73-78. Ref.: https://goo.gl/X2P66N
  33. Hooijdonk B, Woolley D, Warrington I, Tustin S. Roostocks modify scion architecture, endogenous hormones and root growth of newly grafted ‘royal gala’ apple trees. J. Amer. Soc. Hort. Sci. 2011; 136: 93-102. Ref.: https://goo.gl/Kobncn
  34. Sandalio L, Dalurzo H, Gimez M, Romero-Puertas M, Rio L. Cadmium-induced changes in growth and oxidative metabolism of pea plants, J. Exp. Bot. 2001; 52: 1297-1303. Ref.: https://goo.gl/ETwErt  
  35. Saied A, Keutgen N, Noga G. Effects of NaCl stress on leaf growth, photosynthesis and ionic contents of strawberry cvs ‘Elsanta´and ‘Korona’. In: pardossi, A., Serra, G., F. (Eds.). International symposium on managing greenhouse crops in saline environment, International society of Horticultural Science. Pisa: 2003; 67-73.
  36. Chaves M, Flexas J, Pinhero C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany. 2009; 103: 551-560. Ref.:  https://goo.gl/MHXnwi
  37. Yuang Y, Yu L, Wang L, Guo S. Bottle gourd grafts-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Journal pf plant Physiology. 2015; 187: 50-58. Ref.: https://goo.gl/6KFERD  
  38. Rouphael Y, Cardarelli M, Rea E, Colla G. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid grafts. Photosyntheetica. 2009; 50: 180-188. Ref.:  https://goo.gl/afym6X
  39. Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea Biol Plant. 2009; 53: 243-248. Ref.: https://goo.gl/p3KztJ
  40. Liu Z, Bie Z, Huang Y, Zhen A, Lei B, et al. Grafting onto Cucurbita moschata roostock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosybthetica. 2012; 50: 152-160. Ref.: https://goo.gl/hxJ8WV
  41. Amaro A, Macedo A, Pereira A, Goto R, Ono E, et al. The use of graftinf to improve the net photosynthesis of cucumber. Theor exp. Plant Physiol. 2014; 26: 241-249.  Ref.: https://goo.gl/3jQsrU
  42. Liu Y, Qi Y, Bai M, Qi F, Xu Q, et al. Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon. Int J Biol Sci. 2011; 7: 1161-1170. Ref.: https://goo.gl/B7eyp9
  43. Qi Y, Li  L, Liu  F, Li D. Effects of grafting on photosynthesis characteristics, yield and sugar content in melon. J Shenyang Agr Univ. 2006; 37: 155-158. Ref.: https://goo.gl/zSShUJ
  44. Gonzalez C, Llosa J, Quijano A, Forner A. Roostock effects on leaf Photosynthesis in “Navelina” Trees grown in calcareous soil. HortScience. 2009; 44: 280-283. Ref.: https://goo.gl/Rmt6vh
  45. Qinghai G, Wu Y, Jia S, Huang S, Lu X. Effect of rootstock on the growth, photosynthetic capacity And osmotic adjustment of eggplant seedlings under Chilling stress and recovery. Pak. J. Bot. 2016; 48: 461-467. Ref.: https://goo.gl/83WUxQ
  46. Jianlin W Y, Guirui F, Quanxiao J, Defeng Q, Hua W, et al. Responses of water use efficiency of 9 plant species to light and CO2 and their modeling. Acta Ecol. 2008; 28: 525-533. Ref.: https://goo.gl/9n9C6y
  47. Aloni B, Karni L, Deventurero G, Levin Z, Cohen R, et al. Physiological and biochemical changes at the grafts-scion interface in graft combinations between Cucurbita grafts and a melon scion. J. Hortic. Sci. Biotechnol. Ref.: 2008; 83: 777-783. Ref.: https://goo.gl/wJypQy
  48. Irisarri P, Binczycki P, Errea P, Martens H J, Pina A. Oxidative stress associated with rootstockescion interactions in pear/quince combinations during early stages of graft development. J. Plant Physiol. 2015; 176: 25-35. Ref.: https://goo.gl/TsNPHy
  49. Xu Q, GHuo S, Li L, An Y, Shu S, et al. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plants physiology and biochemistry. 2016; 105: 21-28. Ref.: https://goo.gl/2fQgwD
  50. Desimone M, Henke A, Wagner E. Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol. 1996; 111: 789-796. Ref.: https://goo.gl/FFLcfD
  51. Liao L, Cao S, Rong Y, Wang Z. Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and molecular research. 2016; 15: 1-10. Ref.: https://goo.gl/KrVQZy
  52. Morinaga K, Ikeda F. The effects of several grafts on photosynthesis; distribution of photosynthetic product, and growth of young satsuma mandarin trees. J. Japan. Soc. Hort. Sci.1990; 59: 29-34. Ref.: https://goo.gl/4XuGDj
  53. Buchanan B, W Gruissem, Jones R. Biochemistry and molecular biology of plants. American Society of Plant Biologists, John Wiley & Sons, Inc. Somerset NJ. 2000. Ref.: https://goo.gl/T5fodG
  54. Crété P, Leuenberger S, V A Iglesias, V Suarez, H Schob, et al. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J. 2001; 28: 493-501. Ref.: https://goo.gl/3A6J2c
  55. Palauqui J C, Elmayan T, Pollien J M, Vaucheret H. Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997; 15: 4738-4745. Ref.: https://goo.gl/wqbsJX
  56. Shaharuddin N, Han Y, Li H, Grierson D. The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS letters. 2006; 580: 6579-6586. Ref.: https://goo.gl/vhkY9f
  57. Wang S, Liu Z, Sun C, Shi Q, Yao Y, et al. Functional characterization of the apple MhGAI1 gene through ectopic expression and grafting experiments in tomatoes. Journal of plant physiology. 2012; 169: 303-310. Ref.: https://goo.gl/KQ9GDb
  58. Ntatsi G, Savvas D, Huntenburg K, Druege U, Hincha D, et al. A study on ABA involvement in the response of tomato suboptimal temperatura using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED. Enviromental and Experimental Botany. 2014; 97: 11-21.
  59. Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen J, et al. Physiological, biochemical and molecular responses of four prunus grafts submitted to drought stress. Tree physiology. 2013; 33: 1061-1075. Ref.: https://goo.gl/tWefsZ
  60. Miao B, Wen-ting C, Bing-yan X, Guo-shun Y. A novel strategy to enhance resistance to Cucumber mosaic virus in tomato by grafting to transgenic grafts. Journal of integrative agriculture. 2016; 15: 2040-2048. Ref.: https://goo.gl/JdXz4H
  61. Bletsos F, Olympios C. Grafts and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. The European journal of plant science and biotechnology. 2008; 2: 62-73.
  62. Spoustová P, Hýsková V, Müller K, Schnablová R, Ryslavá H, et al. Tobacco susceptibility to Potato virus YNTN infection is affected bygrafting and endogenous cytokinin content. Plant Science. 2015; 235: 25-36. Ref.: https://goo.gl/omxqFf
  63. Vitale A, Rocco M, Arena S, Giuffrida F, Cassanitu C, et al. Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock.  Plant Physiology and biochemistry. 2014; 83: 207- 216. Ref.: https://goo.gl/bsqrtA
  64. Sánchez-Rodríguez, E Ruiz, J Ferreres, F Moreno, D. Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food chemistry. 2012; 134: 775-782. Ref.: https://goo.gl/Smx5up
  65. Jiang F, Y X Liu, W Liu, N Zheng, H T Wang, et al. Relationship between root rot resistance and phenylaprapanoid metabolism in graft capsicum. China Veg. 2010; 8: 46-52. Ref.: https://goo.gl/Bxw8Lt
  66. Zhou B, Gao Y, Lin G, Fu Y. Relationship between disease resistance and electrolytic leakage, proline content and PAL activity in grafted eggplant (in Chinese). Acta Hort Sinica 1998; 25: 300-302. Ref.: https://goo.gl/6m8eCs
  67. Edelstein M, Cohen R, Burger Y, Shriber S, Pivonia S, et al. Integrated management of sudden wilt of melons, caused by Monosporascus cannonballus, using grafting and reduced rate of methyl bromide. Plant Dis. 1999; 83: 1142-1145. Ref.: https://goo.gl/XPx9Rn
  68. Franks. P, Casson S. Connecting stomatal development and physiology. New Phytol. 2014; 201: 1079-1082. Ref.: https://goo.gl/Btu4ir
  69. Jones H. Plants and microclimate: a Quantitative Approach to Environmental. Plant physiology, 3ra Edicion. Cambridge University Press London. 2014. Ref.: https://goo.gl/E5mZNs
  70. Rivard C, Sydorovych O, O’Connell S, Peet M, Louws F. An economic analysis of two grafted tomato transplant production systems in the United States. Horttechnology. 2010; 4: 794-803. Ref.: https://goo.gl/vdwYLf