Research Article

FITT-CORRECT: Updated dynamic and evidence-based principle of exercise prescription

Shambhu P Adhikari1*, Jarugool Tretriluxana2, Rubee Dev3, Emily Eglitis4, Nistha Shrestha5 and Cheryl Kerfeld6

1Department of Physiotherapy, School of Medical Sciences, Kathmandu University, Nepal
2Faculty of Physical Therapy, Mahidol University, Thailand
3School of Public Health, San Yat-sen University, China
4Physiotherapist, Australia
5Department of Physiotherapy, School of Medical Sciences, Kathmandu University, Nepal
6Seattle Public Schools, Seattle, Washington, USA

Abstract

Objective: The FITT (Frequency, Intensity, Time, and Type) principle is an effective foundation in EP. However, the CORRECT components; C–Combination of interventions, O–Order of the Interventions, R–Repetitions, R–Rest period between sets and between sessions, E–Exercise at home, C–Cognitive domain, T–Total dose and re-evaluation plans, should be considered. The purpose of this paper was to describe the updated dynamic and evidence based FITT-CORRECT principle of EP and demonstrates its application using a case study.

Results: Literatures, related to EP, clinical reasoning and clinical decision-making, were critically reviewed. Established evidence is summarized to describe an updated dynamic and evidence-based principle of EP. The gaps within the FITT and other related principles of EP are addressed. The FITT-CORRECT principle was introduced and an effective outcome of the updated principle was demonstrated using a case study. The FITT-CORRECT principle integrates many components that are missing in the FITT and other related EP principles. Based on the reported case study, the FITT-CORRECT principle of EP should optimize patients’ intervention outcomes. Physiotherapists can potentially improve their EP by utilizing the FITT-CORRECT in clinical practice.

Introduction

The principles of EP (EP) are intended for the development of individually tailored exercise programs [1]. The gold standard principle of EP derived by the American College of Sports Medicine (ACSM) is the FITT [Frequency (how often), Intensity (how much or how hard), Time (duration or how long), and Type (mode or what kind)] principle [2].

The fundamental principle of EP has been modified to FITT-VP in 2014 with the addition of Volume (amount) and Progression (advancement) [1]. Reid, et al. added a third ‘T’ introducing the FITT-T principle to address Timing of exercise [3]. Furthermore, the cognitive behavioral components are important but not included in FITT, for exercise adherence and behavioral change [1–4]. Ranasinghe, et al. derived FITTSBALL (“SBALL” - Stage of change, Belief and Ability of the client, Limitations and Life satisfaction) principle to address the missing cognitive behavioral component [4]. These multiple variations demonstrate the need for the many added components to be integrated into one all-encompassing principle.

While prescribing exercises based on the existing principles, there will be many unanswered questions as follows. Which interventions yield positive effect when two or more interventions are combined? Can any exercise be combined with any another exercise? What is the best order? With a combination of exercises, how are the parameters...
redefined? How do the number of repetitions, number of sets and number of sessions determine total duration? Should interventions be applied concurrently or simultaneously or with an interval period? How are duration and rest periods established? In an individually tailored prescription, how does one decide which exercise to be progressed and how? Is the rest period between exercises considered within the total duration? What should the total dose be to achieve the specific objectives? Are specific home exercise programs required? How to decide what home exercise programs are required and what will be their parameters? How to make sure that the home program will not interfere to that of the intervention administered at the clinic? How do we progress an exercise? Which parameter to be progressed first? What are the factors to be considered while progressing an exercise? What cognitive domain plays an important role to yield better intervention effect?

Usual parameters, described by the FITT principle, may not always be appropriate with different health conditions. Therefore, an updated dynamic and evidence-based principle of EP is needed to address the literature gaps.

Methods
A brief review

This brief review provides critical examination of the literature and integrates the existing evidence to educate the clinical practitioners to apply in their routine work. Literatures related to EP, clinical reasoning, clinical decision-making were critically reviewed and established evidence has been summarized to describe an updated dynamic and evidence-based principle of EP. The new principle of EP is expected to address the existing gaps in the literature.

Development of the FITT-CORRECT principle of EP

Based on various existing principles of EP, principles of neuroscience, motor control and learning, practice guidelines, evidence-based physiotherapy practice, experience and outcome of the various contemporary physiotherapy interventions, an updated dynamic and evidence-based principle of EP has been described. The term “CORRECT” has been coined to include all possible components supported by the evidence and that are not included in the original “FITT” principle.

The FITT-CORRECT principle integrates the original technical domains of FITT and added CORRECT components. The FITT-CORRECT principle has been introduced to address the gaps within FITT and its other related principles. The detail on FITT-CORRECT has been described in figure 1 and tables 1.2.

Results
Demonstrating the use of the FITT-CORRECT principle of EP using a case study

Ms. K (name changed, informed written consent was taken) sustained a stroke one week ago and subsequently was unable to perform activities with her right dominant hand. Ms. K’s primary goal was to be able to use her right hand for her Activities of Daily Living (ADLs).

Using the FITT-CORRECT principle, a physiotherapist prescribed an exercise protocol for Ms. K. Based on the evidence, feasibility, appropriateness and patient’s need, the physiotherapist-administered intervention (PAI) called task-oriented training (TOT) was administered at the outpatient clinic. A drinking task was selected as per patient’s preference. This task was divided into components (reaching; reaching and grasping; reaching, grasping and lifting; reaching, grasping, lifting, transport) and trained in the order of their complexity (least to most complex).

The parameters and total dose of the TOT (30 minutes per session, once a day, six days a week for two weeks) was set as per motor control, learning and principles of exercise dependent neuroplasticity. Parameters were progressed based on patient’s performance level and ability. Distributed practice with a rest period whenever needed (indicated with reduced performance or compensatory movement or increased exertion) was adopted. Impairment mitigation strategies (training muscle function, improving range of motion, stretching tight muscles, proprioceptive neuromuscular stimulation, dexterity training) were integrated during the TOT and patient’s active involvement was encouraged.

Functional exercises were prescribed to do at home (HEP-Home Exercise Program) to enhance the effect of TOT. The ADLs such as eating fruit, drinking tea, and eating rice were advised to do three times a day for six days a week for two weeks using the affected hand. She was asked to take rest periods whenever required during the functional tasks. The functional tasks were then progressed to having her put on her eyeglasses and hairclips and combing her hair. The TOT was progressed in line with the progressively more difficult tasks of grasping, lifting, transport) and trained in the order of their complexity (least to most complex).

The parameters and total dose of the TOT (30 minutes per session, once a day, six days a week for two weeks) was set as per motor control, learning and principles of exercise dependent neuroplasticity. Parameters were progressed based on patient’s performance level and ability. Distributed practice with a rest period whenever needed (indicated with reduced performance or compensatory movement or increased exertion) was adopted. Impairment mitigation strategies (training muscle function, improving range of motion, stretching tight muscles, proprioceptive neuromuscular stimulation, dexterity training) were integrated during the TOT and patient’s active involvement was encouraged.

Functional exercises were prescribed to do at home (HEP-Home Exercise Program) to enhance the effect of TOT. The ADLs such as eating fruit, drinking tea, and eating rice were advised to do three times a day for six days a week for two weeks using the affected hand. She was asked to take rest periods whenever required during the functional tasks. The functional tasks were then progressed to having her put on her eyeglasses and hairclips and combing her hair. The TOT was progressed in line with the progressively more difficult tasks of grasping, lifting, transport) and trained in the order of their complexity (least to most complex).

Figure 1: Components and description of the FITT-CORRECT principle of exercise prescription.
The strategies adopted in the treatment of this patient were those that are missing in the FITT and other related EP principles. Based on the reported case study, the FITT-CORRECT principle of EP should optimize patients' intervention outcomes. Physiotherapy providers can potentially improve their EP in their clinical practice by utilizing the FITT_Correct principle.
While combining, those interventions, which yield positive effect and have established evidence, can only be combined with the consideration of other influencing factors. During the combination, the order of the interventions makes a difference. For example, while combining endurance and strength training, if gaining endurance is the main objective, endurance training should be performed first. If gaining strength is the main objective, strengthening exercises should be performed first [8,9]. The priming interventions should always be administered first [10]. For example, the motor preparation biases visual processing during motor-visual combination whereas visual events enhance motor activation during visuo-motor combination [11]. In addition, congruency versus in-congruency between two interventions produces completely opposite outcomes. Therefore, having an appropriate order between combined interventions is of vital importance [12]. The order of interventions not only influences the effectiveness, safety and efficacy but also influence the parameters of each intervention [8,13,14].

Induction of plasticity or long term change in function requires sufficient repetitions [15]. Research has shown a range of 3 to 50 repetitions per set of exercises in individually tailored prescription is successful in producing a change [16]. Repetitions, however, should not be considered alone. It also depends on the number of sets and exercise-rest ratio. For example, one-minute rest between sets may suit a set of fewer repetitions when compared to a three-minute rest between sets to accommodate the effort of a higher number of repetitions [14,17].

If acquisition of skills is to be enhanced, the rest period should be kept as short as possible [6,7]. If fatigue level is to be reduced, the rest period has to be relatively longer [7]. The total intervention duration is calculated based on the number of repetitions within sets, number of sets, exercise-rest ratio and number of sessions per day. This total duration per day is different than the exercise volume used in previous literature [18]. The time of self-analysis during the intervention is included within the total duration whereas the time of outcome assessment should not be included [7].

When therapists administer PAI and provide HEPs, the interventions should not interfere with each other. As Kleim and Jones mentioned in their principle, we look for transference rather than interference effect [15]. If any PAI is to be performed at home, the treatment should be reproducible. The HEP should be such that the exercise adherence level is high and protocol reinforces PAI [16].

The integration of cognitive domain in the evaluation, analysis, as well as in treatment, not only improves treatment outcome but also enhances exercise adherence and reinforces behavioral change [4,6]. Adhikari, et al. in 2018 [7] demonstrated an enhanced effect of an intervention and significant improvement in the self-efficacy level by encouraging clients’ active involvement and integrating motivational strategies. These were evidence to show importance of consideration of cognitive domain in prescribing exercises.

Therapeutic interventions must be prescribed in terms of dosage. The total intervention dose should be adjusted according to the patient’s pathology, relevant medical conditions, and their individual needs and goals. Other contextual factors also influence total dose, which is directly associated with the effect size [19,20]. The total dose should be devised by specifying the desired therapeutic outcome for individuals considering all influencing factors. Therapists further need to consider intervention – response and/or dose response effect, fatigue and nutritional level, motivation and ability, family and caregiver’s support, resources required while dealing with each intervention and/or parameter of the interventions [7,18].

Re-evaluation of the intervention effect must be planned from the beginning to progress, modify or change the prescription (either intervention or the parameters) to meet the evolving needs of the patient. Re-evaluation may be done during the intervention programs or after certain interval follow-ups. An exercise progression model given by Broody and team is the best evidence to progress interventions and/or parameters [18].

Finally, therapists must consider holistically the patient’s pathological factors (e.g. lesion type, side, size, location, severity, duration, comorbidities), personal factors (e.g. age, body size, gender, habits), and socio-environmental factors (home and workplace demands and requirements) when determining intervention prescription [18].

Conclusion

The FITT principle is a foundation principle in EP, which is still used today. The FITT-CORRECT principle enhances and integrates many components that were lacking in the original FITT and other related principles. The FITT-CORRECT principle assists therapists to work within the evidence based practice guidelines. Using the FITT-CORRECT requires critical clinical decision-making that considers patients’ needs, clinician skill, current evidence and context.

Limitations

Though the updated principle was based on the established principles and evidence, we conducted just a brief review, which is a limitation of this study. A validation of the updated principle is warranted. The effectiveness of the intervention was evaluated through a case study. The outcome of present case study would provide preliminary information and therefore, clinical trials should be conducted to establish interventions effectiveness for its application in the clinical practice.
Acknowledgement

We would like to express our sincere gratitude to the participant without whom conduction of the case study would not have been possible.

Declarations

Consent to participate: The participant in our study cannot be identified in any way in the manuscript. A written informed consent was obtained from the participant and the caregiver prior to the recruitment.

Consent to publish: A written informed consent was obtained from the participant and the caregiver prior to the recruitment to publish or disseminate the outcome of the case study.

Availability of data and materials: Any information regarding the present study can be available from the first author up on reasonable request.

Authors’ contributions: All authors (SPA, JT, RD, EE, NS, CK) contributed to the preparation of this manuscript. SPA led the conception and design of the study. SPA and CK contributed to the preparation of this manuscript. SPA participated in revising and finalizing the draft of the manuscript by critically revising the important intellectual content. SPA conducted the case study. All authors contributed in describing the case and writing the discussion. All authors read and approved the final version of the manuscript.

References

 PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139760/

