Review Article
More Information

Submitted: October 17, 2022 | Approved: November 03, 2021 | Published: November 11, 2022

How to cite this article: Sahithi M, Samskruthi M. Nutritional interventions for the prevention and treatment of neurological disorders such as anxiety, bipolar disorder, depression, epilepsy, multiple sclerosis, and schizophrenia. J Neurosci Neurol Disord. 2022; 6: 052-071.

DOI: 10.29328/journal.jnnd.1001070

Copyright License: © 2022 Sahithi M, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords: Anxiety; Bipolar disorder; Depression; Epilepsy; Multiple sclerosis; Schizophrenia

 FullText PDF

Nutritional interventions for the prevention and treatment of neurological disorders such as anxiety, bipolar disorder, depression, epilepsy, multiple sclerosis, and schizophrenia

Sahithi Madireddy1* and Samskruthi Madireddy2

1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA

*Address for Correspondence: Sahithi Madireddy, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, Email: sahithim@mit.edu; Smadire2@jhu.edu

Neurological disorders are a significant cause of mortality and disability across the world. The current aging population and population expansion have seen an increase in the prevalence of neurological and psychiatric disorders such as anxiety, bipolar disorder, depression, epilepsy, multiple sclerosis and schizophrenia. These pose a significant societal burden, especially in low - and middle-income countries. Many neurological disorders have complex mechanisms and lack definitive cures; thus, improving our understanding of them is essential. The pathophysiology of neurological disorders often includes inflammation, mitochondrial dysfunction and oxidative stress. Oxidative stress processes, especially the generation of reactive oxygen species, are key mechanisms in the development of neurological disorders. Oxidative stress refers to an imbalance between the production of reactive oxygen species and antioxidants that can counteract them. Through their impacts on the pathophysiology of neurological disorders, nutrients with anti-inflammatory, neuroprotective and antioxidative properties have been suggested to prevent or mitigate these disorders. Certain vitamins, minerals, polyphenols and flavonoids may have therapeutic effects as adjuvant treatments for neurological disorders. Diet quality is also a risk factor for some neurological and psychiatric disorders and addressing nutritional deficiencies may alleviate symptoms. Therefore, optimizing nutritional intake may represent a potential treatment or prevention strategy. This review summarizes a selection of promising nutrients for the prevention and amelioration of neurological disorders to provide a summary for scientists, clinicians and patients, which may improve understanding of the potential benefits of nutrients in the treatment of neurological disorders.

Neurological disorders including anxiety, bipolar disorder (BD), depression, epilepsy, multiple sclerosis (MS), and schizophrenia are posing a significant societal burden due to their devastating effects, including life-long disability to the aging population. Recent evidence has shown that oxidative stress and neuro-inflammation play crucial roles in the onset of neurological disorders [1-3]. Despite the importance of oxygen for life and in biological processes such as transcription and signaling, oxygen can cause damage to biological molecules via the formation of reactive oxygen species (ROS) and free radicals including superoxide, hydroxyl radicals and hydrogen peroxide by univalent reduction [4-6]. Accumulation of ROS leads to oxidative stress (OS), due to an imbalance between the levels of oxidants and antioxidants within a cell [7]. This state can also be caused by deficits in the cell’s antioxidant system [8,9]. Free radicals have at least one unpaired electron, which causes them to be highly reactive [10]. Oxygen free radicals are produced during cellular metabolism [7]. In metabolic reactions, some electrons prematurely leak, leading to the formation of superoxide (O2•−) [11]. In conditions of OS, excess O2•− causes iron to be released from iron-containing molecules, allowing the Fenton reaction to occur and produce highly reactive hydroxyl radicals (•OH) [12]. These can then produce other reactive radicals such as peroxyl radicals, the simplest of which is the perhydroxyl (or hydroperoxyl) radical, capable of peroxidating fatty acids [5]. Moreover, O2•− reacts rapidly with NO to form peroxynitrite, a reactive nitrogen species which can cause substantial damage within the cell [7,13].

ROS can cause great damage to lipids, proteins, nucleic acids and polysaccharides [14,15]. Within the central nervous system, neurons are particularly vulnerable to ROS damage because of their fatty acid content (which is susceptible to peroxidation), high metabolic rates and levels of transition metals, low antioxidant defenses, and low capacity for regeneration [12]. Neurons also have high energy requirements, meaning that the mitochondria produce high amounts of ROS while also being vulnerable to damage from ROS themselves [16]. Moreover, OS has been shown to cause mitochondrial fission [17]; exposure of cultured cerebellar granule neurons to H2O2 causes mitochondrial fragmentation to occur within one hour [18]. OS can cause changes in protein structure, which can in turn contribute to further oxidative damage [6]. Furthermore, ROS and other continuous OS can cause mitochondrial dysfunction, inhibit DNA damage repair and cause cellular injury, which together may accelerate aging and promote the onset of neurological disorders [19,20]. A vast body of evidence supports the role of ROS in neurological and several other diseases [21-24].

Nutrients can affect many aspects of physiology including monoaminergic activity, inflammation, mitochondrial activity, neuroprogression and oxidative stress [25-27]. Antioxidant treatments are emerging as promising strategies to slow the progression of neurological disorders [28,29]. Consumption of dietary antioxidants can ameliorate the oxidative damage caused by free radicals that are produced in states of inflammation, impaired antioxidant defense and mitochondrial abnormalities [30,31]. Accordingly, antioxidant-based treatments can delay or even reverse OS to protect against neurological disorders [32]. Nutrition is a key aspect in the development and progression of neurological diseases, and making dietary changes to include certain nutrients may prevent neurological decline [33,34]. Vitamins, omega-3 fatty acids, zinc and magnesium support brain function through their antioxidant and anti-inflammatory functions [35]. Additionally, polyphenols and flavonoids counteract oxidative stress, inflammation and apoptosis [36-40]. The present paper discusses nutrients with the potential to mitigate reactive OS in neurological disorders and provides a comprehensive overview of the benefits of nutrients in patients with neurological and psychiatric disorders. Improving our understanding of the influence of nutrients on the course of neurological disorders may enable the development of nutrients to mitigate symptoms and promote recovery.

Anxiety

Anxiety disorders are the most common mental illness [41-44]; they affect about one in five people globally and are among the most frequently diagnosed psychiatric disorders in youth [45,46]. About 31.1% of the population of the United States report having suffered from an anxiety disorder at some point in their life, with the prevalence of anxiety disorders among women being twice as high as among men [47]. Anxiety disorders can include psychological symptoms such as apprehension, compulsions, uneasiness, and panic attacks [48-50]. Other symptoms of anxiety include irritability, worry, restlessness, difficulties in sleep and concentration, headaches, nausea, stomachaches and palpitations [46,51,52]. Children who have anxiety disorders often report difficulties in academic settings, decreased self-confidence, and challenges with interpersonal relationships [46].

Anxiety and nutrients

Recent evidence suggests that anxiety is associated with vitamin C deficiency and that vitamin C supplementation may reduce symptoms [53-56]. A study using a rat model found that the administration of 80 mg/kg/day of vitamin C in drinking water for 83 days inhibited anxiety-like behavior [57]. Similarly, a placebo-controlled trial involving 42 high school students found that oral administration of 500 mg/day of vitamin C for 14 days increased plasma vitamin C levels and reduced self-reported anxiety [53]. Supplementation of vitamin E has also been found to significantly reduce anxiety among patients with type 2 diabetes [56] and magnesium reduces self-reported anxiety [58,59]. Three clinical trials have confirmed magnesium, in combination with other therapies (for example, one study administered 200 mg/day of magnesium and 50 mg/day of vitamin B6) to be effective in decreasing anxiety symptoms [60-62]. Patients with a magnesium deficiency have been reported to benefit from the administration of 125 mg − 300 mg of glycinate or magnesium taurine four times a day to attenuate symptoms of anxiety [63].

Omega-3 (ω3) fatty acids influence serotonergic and dopaminergic activity, which ameliorate anxiety and depression [64-69]. People with anxiety and depression have been found to have decreased ω3 PUFA levels in the blood and brain, as well as a lower ratio of ω3 to ω6 PUFAs [70-72]. A placebo-controlled study demonstrated that supplementation of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) over 12 weeks reduced the severity of symptoms of anxiety by 20% among medical students [73]. Additionally, a meta-analysis of 402 patients with major depressive disorder identified adjuvant ω3 PUFA as beneficial for managing anxiety and depression [74]. Another meta-analysis of 150,278 subjects found high fish intake to be associated with a 27% lower chance of developing depression [75]. Similarly, a cross-sectional study of 12,268 subjects reported a negative correlation between anxiety disorders and intake of ω3 PUFAs including DHA, EPA and docosapentaenoic acid [76]. Another study treated students who experienced anxiety around examinations with 90 mg or 360 mg of linoleic acid daily and reported improved mood, focus and organization [77]. A 3 - months treatment with 2250 mg/day EPA and 500 mg/day DHA was found to alleviate anxiety and anger among 22 people with the substance-use disorder [78] and another study involving 52 heart attack survivors found 1 month of adjuvant therapy with 375 mg/day DHA and 465 mg/day EPA to decrease anxiety and depressive symptoms by 10% and 22%, respectively [79].

Polyphenols can be beneficial in the management of anxiety through their influence on mechanisms including oxidative stress, inflammation, the adrenergic and serotonergic pathways and the HPA axis [80]. For example, researchers demonstrated the polyphenol quercetin administered at 300 mg/kg had activity against anxiety [81]. Polyphenol resveratrol has also been suggested to improve behavioral symptoms of anxiety and depression, as it has antiapoptotic, antioxidative and anti-inflammatory effects [82]. 50 mg - 100 mg of flavonoids given as supplements for at least 8 weeks may be effective against depression and anxiety [83]. Considerable evidence has posited that flavonoids scavenge ROS and decrease the formation of free radicals [84,85]. For instance, quercetin was found to prevent lipid peroxidation and damage to antioxidant enzymes, as well as reduce anxious behaviors in mice undergoing immobilization stress [86]. Table 1 shows the nutrients that may be beneficial for anxiety.

Table 1: Effective nutrients for neurological disorders Anxiety, Bipolar Disorder, Depression, Epilepsy, Multiple Sclerosis and Schizophrenia.
Neurological Disorder Effective Nutrients Sources
  Anxiety Vitamin C [53-57]
Magnesium [58-63]
Omega-3 PUFAs [64-79]
Polyphenols/Flavonoids [80-86]
  Bipolar Disorder Vitamin D [124-129]
Omega-3 PUFAs [130-140]
Magnesium [140,141]
    Depression Vitamin D [170-175]
Omega-3 PUFAs [64,65,153-169]
Magnesium [176-183]
Zinc [74,184-187]
Polyphenols/Flavonoids [188-195]
    Epilepsy Vitamin B6 [211-218]
Vitamin D [213,219-224]
Vitamin E [213,225-228]
Vitamin C [229-231]
Omega-3 PUFAs [232-239]
Magnesium [240-243]
Polyphenols/Flavonoids [244-252]
    Multiple Sclerosis Vitamin A [265-275]
Vitamins B3, B12 [276-285]
Vitamin D [271,286-296]
Omega-3 PUFAs [297-306]
Polyphenols/Flavonoids [308-321]
    Schizophrenia Vitamins B6, B12, B9 [339-342]
Vitamin C [343-348]
Vitamin E [349,350]
Vitamin D [352-357]
Omega-3 PUFAs [350,358-365]
Polyphenols/Flavonoids [366-371]
Bipolar disorder

Bipolar Disorder (BD) is a debilitating psychiatric condition involving altered neural plasticity [87-93]. It is characterized by episodes of depression and mania or hypomania [94-101]. There are two major categories of bipolar disorder: type I (BD-I) and type II (BD-II) [102,103]. The former is diagnosed in patients who have had at least one manic episode, marked by heightened activity and grandiosity, after which they experience a depressive or hypomanic episode [104-107]. In contrast, BD-II involves hypomanic and depressive episodes without manic episodes [108,109]. Some patients with BD display progressive alterations in neuroanatomy such as decreasing cortical thickness, lateral ventricle enlargement, or decreasing hippocampal volume, which is correlated with BD progression [110-114]. Ultimately, BD is a complex illness influenced by a variety of genetic, environmental, and social factors with a pathophysiology including disrupted brain development; altered chronobiology and neuroplasticity; mitochondrial dysfunction; oxidative and nitrosative stress; endoplasmic reticulum stress; and defects in signaling involving apoptosis, neurotrophic factors, inflammation, calcium and neurotransmitters [115-122]. The parietal lobe-which plays an important role in memory, attention, and other cognitive functions-is also involved in BD development [109,123].

Bipolar disorder and nutrients

One study comprising 118 participants found that patients with BD were 470% more likely to be deficient in vitamin D than the general population [124]. In contrast, one cross-sectional study found plasma 25-hydroxy vitamin D levels to be higher in patients with BD who were in a state of decompensation than in healthy controls [125]. There is evidence to suggest that vitamin D supplements may reduce symptoms of depression and mania, although further research is required to determine clinically effective dosages [126-128]. Moreover, vitamin D has been reported to have anti-inflammatory activity [129].

Patients with BD have been found to have altered levels of PUFAs [130-132]; an analysis of six studies involving a total of 118 patients with BD-I and 147 healthy controls found erythrocyte DHA and EPA levels to be decreased in patients with BD-I [131]. Supplementation with omega-3 PUFAs has been proposed to be beneficial for many diseases including dementia, cancer, hypertension, diabetes, arthritis, arteriosclerosis and autoimmune disease and evidence supporting the use of ω3 PUFAs in managing BD is particularly promising [133]. Omega-3 PUFAs may improve symptoms of BD by increasing levels of brain-derived neurotrophic factors [134]. Epidemiological and experimental studies have investigated the relationship between PUFA intake and the presence and severity of depression and several studies have reported similar benefits for patients with BD [135-137]. Administration of 1 g/day - 2 g/day of EPA has been found to decrease depressive symptoms in patients with BD-I [138], while a placebo-controlled study reported administration of 1 g/day EPA and 1 g/day DHA for 52 weeks as a prophylactic and adjuvant therapy to be effective for patients with BD [139]. However, a randomized placebo-controlled trial involving 31 patients with BD in a euthymic state and 15 healthy controls found that 1250 mg/day DHA for 12 weeks improved cognitive performance in healthy controls only [140].

The findings relating to blood magnesium levels in patients with BD are varied, with one study reporting serum magnesium levels to be significantly higher than those of healthy controls during mania, depression and hypomania, but comparable during remission [141]. Therefore, serum magnesium could be a useful biomarker of acute BD episodes. Several studies have also observed altered serum levels of copper in patients with BD [142]; one study involving 133 patients with BD found elevated serum copper levels in patients with stage I BD compared with those in more advanced stages of BD [142]. Table 1 shows the nutrients that can be effective for bipolar disorder.

Depression

Depression is one of the most common psychiatric illnesses, affecting hundreds of millions of people globally [143-146] and over 17% of the population of the United States [147]. Major depressive disorder (MDD) accounts for 40% of psychiatric disorders in the United States and affects almost 350 million people around the world [148,149]. This condition is associated with a high level of morbidity and the increased risk of stroke, suicide, cardiac emergencies, hypertension and diabetes resulting in high mortality rates. Symptoms of MDD include apathy, anhedonia, changes in appetite and weight, psychomotor retardation/agitation, depressed mood, disrupted sleep, impaired cognition, guilt and recurrent suicidal ideation [148,150,151]. Depression creates an economic burden through loss in productivity, fatigue and mortality [152].

Depression and nutrients

Reduced brain levels of DHA due to deficiency in omega-3 PUFA are correlated with depressive behavior [153-160]. A meta-analysis of 255,076 subjects found consumption of 50 g/day of fish to reduce the risk of depression by 16%, 0.5 and 1.8 g/day of ω3 PUFAs to lower depression risk by 31% and 70%, respectively, and EPA and DHA to show a dose-response relationship [161]. Another meta-analysis of 14 studies found EPA, DHA and total ω3 PUFA levels to be lower in the blood of depressed patients compared with controls [65]. Post-mortem studies have revealed patients with MDD, BD, or those who had committed suicide to have decreased DHA levels in the prefrontal cortex [162]. Consuming fish less than once per week has been reported to increase the severity of depression [163,164], while EPA—but not DHA—purportedly mediates the benefits of ω3 supplements in patients with MDD [64,165,166], with considerable evidence of the benefit of 1−2 g/day ethyl-EPA for patients with MDD resistant to antidepressants [167,168]. Furthermore, EPA-rich supplements without DHA are more effective for MDD than supplements rich in DHA [169]. In the case of vitamin D deficiency, vitamin D receptors in the brain are less stimulated, which may contribute to depressive symptoms [170-174]. A meta-analysis of seven trials including 3,191 subjects did not find vitamin D supplementation to improve depressive symptoms, even though two studies of patients with MDD found vitamin D to moderately improve depressive symptoms [175].

Depressed adults have lower levels of serum magnesium [176-179]. One study reported inadequate dietary magnesium to be associated with depression and reduced magnesium levels in serum and cerebrospinal fluid have been reported to be associated with depressive symptoms and suicidal behavior [180]. In rodent models, consumption of magnesium was effective for decreasing depression-like behavior as adjuvant therapy [181,182] while a trial of elderly patients with depression and magnesium deficiency found supplementation with 450 mg/day magnesium over 12 weeks to effectively decrease depressive symptoms at a level comparable with imipramine [183]. Zinc is required for the maximal function of many cellular processes, and zinc deficiencies can cause neurological disorders and depressive symptoms such as irritability, altered mood, and impaired cognition. Zinc can cross the blood-brain barrier and the blood-cerebrospinal fluid barrier [184]; once in the brain, zinc becomes concentrated in the neocortex, hippocampus and amygdala [185,186]. A systematic review of trials using zinc supplements identified the potential therapeutic value of zinc, either as a monotherapy or adjunctive to antidepressant medications for the treatment of depression [187]. A meta-analysis including three randomized control trials (RCTs) found that adjunctive supplementation with 25 mg/day zinc over 6 weeks - 12 weeks improved symptoms of MDD [74].

Polyphenols and flavonoids have been suggested to be beneficial in preventing diseases induced by OS, including depression [188-191]. In a study of 10,752 women with a 10-year follow-up, flavanone, flavanol and flavone intake were negatively associated with the risk of developing depression [192]. A double-blind randomized placebo-controlled study of 74 subjects found supplementation of green tea extract for 5 weeks resulted in the prevention of depressive symptoms [193]. In another study, researchers found that administration of the nonflavonoid phenol curcumin for 6 weeks at 1000 mg/day decreased the severity of the major depressive disorder in patients without suicidal ideation or other psychiatric disorders [194]. Additionally, a Gingko Biloba polyphenol extract containing the flavonoids quercetin and kaemferol has been found to have antidepressant activity in mice [195]. Table 1 shows the nutrients that can be effective for depression.

Epilepsy

Epilepsy is a chronic neurological disorder characterized by the presence of seizures [196-201] and affecting an estimated 50 million people globally [202-205]. Approximately 2.4 million - 4.6 million people are diagnosed with epilepsy every year [206], one-third of which do not respond to medications and continue to have seizures over their lifetime [207-209]. This burden has a significant societal impact and over half of the cases are idiopathic, with the cause of the disease unknown [210].

Epilepsy and nutrients

Adjunctive multivitamin therapy (100 mg vitamin B6, 5 mg vitamin B9, 1000 IU vitamin D, 400 IU vitamin E, and 100 mg Q10) has been shown to be effective for patients with drug-resistant focal epilepsy [211]; with a reported decrease in mean seizure frequency from 9 to 2 per month and 63% of subjects reporting a ≥ 50% reduction in seizure frequency at the 6-month follow-up [209]. However, although some studies of patients with epilepsy have identified a therapeutic benefit of vitamin B6 supplementation in terms of improved clinical outcomes, this is not the case for every patient [212-218]. Multiple studies have identified vitamin D deficiencies among pediatric and adult patients with epilepsy [219-222]. In one clinical trial involving 23 patients with epilepsy administered 4,000 IU/day of vitamin D3 was for 4 weeks followed by 16,000 IU/day for 4 weeks to one group and a placebo followed by 8,000 IU/day of vitamin D3 to another. The first group experienced a 67% − 71% reduction in mean seizure frequency [213]. Similarly, vitamin D3 supplementation has been shown to decrease seizure frequency by as much as 40% among patients with drug-resistant epilepsy and vitamin D3 deficiency [223]. Studies using animal models of epilepsy have found vitamin D to have anticonvulsive effects and knocking out the vitamin D receptor significantly increases seizure frequency in mouse models of epilepsy [224]. Another study of 648 children with epilepsy found improved seizure control with vitamin D supplementation [222].

Vitamin E has been found to reduce the peroxidation of lipids and proteins while preventing ROS accumulation in animal models of epilepsy [225,226]. In line with this, the administration of 400 IU/day of vitamin E over 3 months to patients with epilepsy has been shown to reduce seizure frequency by almost 60% compared with placebo treatment [213]. Clinical trials have also supported the long-term use of adjunctive vitamin E for patients with intractable epilepsy [227,228]. Studies found that patients with epilepsy have decreased serum levels of Vitamin C [229]. Animal studies also have suggested vitamin C to be beneficial for seizure control through the reduction of OS in the context of epilepsy [230,231].

Fish oil has also been observed to prevent seizures in patients with epilepsy as well in an open-label study [232-234]. However, the evidence of the anticonvulsive effects of fish oil and ω3 PUFAs is mixed with some RCTs reporting consumption of 0.6 g/day - 2 g/day fish oil to reduce the length and occurrence of seizures [235-237], but some non-randomized studies failed to identify any anticonvulsive activity [238]. Studies using animal models have indicated that ω3 fatty acids may control seizures, but their efficacy as a therapy against seizures remains to be established. Given the safety of fish oil at < 4 g/day, supplementation in conjunction with conventional medications could be a beneficial approach to control seizures [239]. Deficiencies in magnesium have also been suggested to cause seizures, and patients with epilepsy have been reported to have lower magnesium levels than healthy controls [240-242]. Additionally, severe epilepsy is associated with lower levels of magnesium than mild/moderate epilepsy [243].

Polyphenols and flavonoids may also be neuroprotective in epilepsy [244,245]. Polyphenols have been studied in animal models of seizures and epilepsy [246-249]. In one study, 15 mg/kg/d resveratrol for 10 days prevented neuron death and epilepsy onset in a rat model [247]. In another study, 30 mg/kg resveratrol per hour for 3 hours followed by administration twice a day for 3 days decreased OS and neuroinflammation in a rat model, while preventing abnormal neurogenesis [248]. Rats treated with 25 mg/kg and 50 mg/kg of the polyphenol epigallocatechin gallate (EGCG) were protected against kindling, an animal model of epilepsy. Moreover, EGCG prevented OS and cognitive decline [249]. Preclinical studies have recently indicated curcumin may be beneficial in epilepsy while being well-tolerated [250,251]. In zebrafish models of epilepsy-induced with pentylenetetrazol, curcumin was found to be similar to valproate in its ability to prevent tonic-clonic seizures [252]. Table 1 shows the nutrients that can be effective for epilepsy.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic disease involving demyelination of the central nervous system [253-257]. The condition is an inflammatory and neurodegenerative disorder, with multifactorial causes including genetic and environmental factors [258-261]. Patients with MS struggle with cognitive function, respiration and malnutrition [262,263]; and the development of pain, vision impairments, fatigue and abnormal motor function is frequently seen in MS [264].

Multiple sclerosis and nutrients

In vivo and in vitro studies have identified potential benefits of vitamin A for the treatment of MS [265-268], and patients have been reported to have lower serum levels of the vitamin [269-271]. Vitamin A has antioxidant and anti-inflammatory properties [272] and administration has been shown to enhance astrocyte activity, attenuate the immune response and reverse demyelination in patients with MS [273-275]. Vitamin B12 is an immunomodulator and serves as a cofactor in myelin synthesis and deficiencies are linked to MS [276-278]; patients with relapsing-remitting MS have been found to have reduced plasma levels of folate and vitamin B12, despite elevated concentrations of homocysteine [279-281]. Folate and vitamin B12 regulate MS by increasing the uptake of homocysteine, which is essential for myelin synthesis [282,283]. Additionally, vitamin B3 can promote remyelination, which may provide benefits for patients with MS [284]. Although one study has reported that high doses of thiamine improve fatigue in patients with MS [285], additional clinical trials are required to find the most effective regimen for vitamin B in the treatment of MS.

Many studies have observed an association between vitamin D levels and the development of MS [286-289] and the rates of MS development tend to be higher in areas where environmental vitamin D is less available [290]. Vitamin D has been reported to regulate inflammation in MS; consequently, higher intake may delay the progression of MS [271,291]. Vitamin D deficiency is an established risk factor for MS and targeting vitamin D levels could also represent an approach to control symptoms and progression of the disease [291-294]. Furthermore, MS is accompanied by a high risk of osteoporosis, for which prophylactic calcium and vitamin D are often considered during the initial stages of the illness [295,296].

Polyunsaturated fatty acids are suggested to be beneficial for MS patients [297-300]. Long-chain ω3 PUFAs including DHA and EPA may regulate cellular metabolism and inflammation in MS [301,302] and dietary intake of long-chain PUFAs can overcome the effects of low sun exposure, to reduce the risk of developing MS [303]. A low-fat diet supplemented with ω-3 fatty acids has been shown to lower fatigue by up to 60% and reduce the occurrence of relapse among patients with MS while reducing the severity of disability [304-306]. Similar results have been observed with dietary supplementation of vitamins A and E [307]. Although several studies have reported reduced levels of vitamin C in patients with MS, the potential benefits of the antioxidants vitamins C and E have not been widely investigated as therapies for MS.

Polyphenols may be beneficial in preventing and treating MS [308,309]. Compounds in this family including curcumin, resveratrol, apple flavonoid-enriched fraction, catechins, quercetin, extra virgin olive oil and white grape extract have been found to decrease the presence of OS and inflammatory cytokines in MS while influencing neural stem cells [310,311]. In a mouse model of MS, orally-administered resveratrol decreased neuronal damage [312]. 3 weeks of 250 mg/kg/d resveratrol administration showed benefit as an adjunctive therapy for MS. Effects of this treatment included decreasing OS, lowering NF-κB signaling, improving mitochondrial function and increasing motor coordination [313]. Additionally, prior studies have found that flavonoids reduced the extent of demyelination in MS, consistent with their possible therapeutic use [314,315]. In one study, patients with MS treated with grape seed capsules had improvements in quality of life, as well as in physical and mental functioning [316]. Preliminary data from an RCT indicates G. Biloba extract may decrease cognitive dysfunction associated with MS [317]. Surveys of Australian and American patients indicate G. Biloba is the most commonly used herbal supplement among MS patients [318,319]. Curcumin may also have protective effects in MS patients [320]. This may be the case particularly due to its ability to limit pro-inflammatory cytokine secretion [321]. Table 1 shows the nutrients that can be effective for multiple sclerosis.

Schizophrenia

Schizophrenia is a severe psychiatric disorder that causes cognitive, functional, and emotional disability [322-325]. Schizophrenia is often associated with frequent relapses and the condition is marked by anatomical changes in the brain including decreased brain volume, shrinking gray and white matter and increased volumes of the third and lateral ventricles [326,327]. Post-mortem analyses have identified abnormalities in regions including the prefrontal cortical areas, amygdala, basal ganglia, corpus collosum, superior temporal gyrus and medial temporal lobe in patients with schizophrenia [328,329]. Positive and negative symptoms have been reported (delusions, hallucinations and flat affect, social withdrawal, respectively) and cognitive impairment such as difficulty sustaining attention, memory problems, or executive dysfunction, may be present, even in the prodrome phase before the onset of active schizophrenia [330-333]. These cognitive deficits may manifest from a young age, diminishing patients’ ability to participate in society and the workforce and creating difficulties with self-care [334,335]. Patients with schizophrenia often develop other psychiatric conditions including depression, anxiety, substance abuse, suicidality and obsessive behavior, which exacerbate the wide-reaching societal burden of the condition [336].

Schizophrenia and nutrients

Meta-analyses have revealed that patients with schizophrenia are more likely to be deficient in folate than healthy controls [337,338] and numerous trials have investigated the benefits of supplemental vitamin B6, folate, and folic acid with vitamin B12 or vitamins B6 and B12 [339]. A meta-analysis of seven RCTs comprising 297 patients found that vitamin B supplementation improved symptoms, while supplementation with 25 mg/day vitamin B6, 400 μg/day vitamin B12 and 2 mg/day folic acid over 3 months reduced total Positive and Negative Symptom Scale (PANSS) scores in patients with schizophrenia with elevated homocysteine [340]. However, vitamin B supplements have been shown to be most effective at alleviating symptoms during the early stages of schizophrenia [341,342].

The antioxidants vitamin C and vitamin E have been widely investigated for schizophrenia, as patients with schizophrenia have lower plasma levels of these vitamins than healthy controls [343-345]. Additionally, levels of superoxide dismutase (SOD), an antioxidant marker have been reported to be lower in patients with schizophrenia [346]. A placebo-controlled double-blind study of 40 patients with schizophrenia investigating the use of adjunctive vitamin C for 8 weeks alongside atypical antipsychotics found that vitamin C reversed the elevated serum MDA [347] and decreased plasma ascorbic acid, which is associated with schizophrenia, and improved the Brief Psychiatric Rating Scale (BPRS) scores more than the placebo [347]. Similarly, supplementation with vitamin C, vitamin E, or ω3 fatty acids has been found to reduce both BPRS and PANSS scores in patients with schizophrenia [348]. Vitamin C, either alone or in combination with vitamin E, has also been shown to be useful for decreasing dyskinesia scores and improving BPRS scores [347], while daily short-term and long-term treatment with 600 IU/day - 1600 IU/day vitamin E alone has not been found to change BPRS score [349]. Some early studies have suggested vitamin E may be beneficial in managing and preventing the progression of tardive dyskinesia, which may arise following the long-term use of antipsychotics [350]. However, a meta-analysis of 11 RCTs failed to find evidence of this effect [351].

Vitamin D is involved in neuroprotection and nervous system development, and patients with schizophrenia are often deficient in this vitamin [352-354]. A study of 424 patients with schizophrenia and 424 controls found low neonatal blood levels of 25(OH)D3 to be associated with an increased risk of schizophrenia [355]. Similarly, another study comprising 20 patients with schizophrenia and 20 healthy controls found that lower 25(OH)D3 levels were associated with greater deficits in cognition and symptom severity in patients who had recently developed schizophrenia [356]. A placebo-controlled study involving 60 patients with chronic schizophrenia found that a 12 - weeks treatment of daily probiotics and 50,000 IU of vitamin D3 given every 2 weeks improved total PANSS scores, as well as scores on the PANSS general psychopathology scale [357].

Deficiencies in PUFAs can be associated with cognitive deficits and psychosis, which may be indicative of increased OS in schizophrenia [358,359]. Post-mortem studies have found lower levels of PUFAs, including DHA and arachidonic acid, in the brains of patients with schizophrenia [359], who also often have deficiencies and altered PUFA metabolism in erythrocyte membranes [350,360]. Multiple RCTs showed supplemental ω3 fatty acids to significantly improve symptoms of schizophrenia [350,361] possibly due to the antioxidative effects of these molecules [362,363]. One study reported that ω3 fatty acid supplements alleviated symptoms of tardive dyskinesia and schizophrenia [350]. Likewise, a combination of vitamin C, vitamin E and ω3 fatty acids given over 4 months has been shown to improve both positive and negative symptoms and erythrocyte SOD levels in patients with chronic schizophrenia [364]. An RCT of 71 patients with schizophrenia found that when ω3 PUFAs were administered over 26 weeks, the severity of schizophrenia symptoms decreased [365]. Another study evaluated supplemental vitamin C (1000 mg/day), vitamin E (400 IU twice/day) and ω3 fatty acids (1000 mg twice/day) as an add-on therapy to haloperidol and found that, over the 4 - month treatment period, the BPRS, Barnes Akathisia Rating Scale, Scale for the Assessment of Negative Symptoms and Simpson Angus Scale scores decreased [364].

As antioxidant, anti-inflammatory and antiapoptotic compounds, polyphenols provide neuroprotection against schizophrenia [366]. Quercetin, as a free radical scavenger, may be able to alleviate schizophrenia symptoms [367]. The compounds scopoletin and rutin have inhibitory activity against the D2 receptor, which may allow them to have less positive symptoms in schizophrenia [368]. Preclinical evidence points to the possible benefit of using EGCG in schizophrenia [369]. In a double-blind study, researchers found 240 mg/d of G. Biloba extract administered for 12 weeks on 157 patients significantly improved symptoms of tardive dyskinesia compared to placebo [370]. Moreover, curcumin may be beneficial in mitigating the adverse effects of treatment with neuroleptics in patients with schizophrenia [370,371]. Table 1 shows the nutrients that can be effective for schizophrenia.

Neurological disorders including anxiety, BD, depression, epilepsy, MS and schizophrenia have attracted considerable research interest due to their sometimes devastating effects, including life-long disability. These disorders arise from pathophysiological changes including mitochondrial dysfunction, neuroinflammation and OS. There is evidence that nutrients may improve these pathophysiological processes. Similarly, inadequate nutrition and deficiencies may contribute to the pathology of neurological disorders, presenting another obstacle to recovery. Nutritional consumption influences the functioning of the brain and the intake of certain nutrients may prevent pathology of the central nervous system. The findings presented here suggest that improving nutritional status is likely to be an important aspect of both treatment and prevention. Knowing how nutrients can affect cognition may inform strategies to protect and improve neuronal function through modifications to diet and mass nutrition. Greater awareness of how various nutrients affect the development of neurological diseases will facilitate the development of specialized diets and nutritional supplements for their treatment, symptom relief and recovery.

Funding statement

The authors declare that the research was conducted in the absence of any commercial or financial help.

Author contributions

The authors declare that all authors listed have made a substantial, equal, direct and intellectual contribution to the work and approved the paper for publication

  1. Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis. 2021 Oct;36(7):1591-1626. doi: 10.1007/s11011-021-00806-4. Epub 2021 Aug 13. PMID: 34387831.
  2. Butt MS, Tariq U, Iahtisham-Ul-Haq, Naz A, Rizwan M. Neuroprotective effects of oleuropein: Recent developments and contemporary research. J Food Biochem. 2021 Dec;45(12):e13967. doi: 10.1111/jfbc.13967. Epub 2021 Oct 30. PMID: 34716610.
  3. Patel M. Targeting Oxidative Stress in Central Nervous System Disorders. Trends Pharmacol Sci. 2016 Sep;37(9):768-778. doi: 10.1016/j.tips.2016.06.007. Epub 2016 Aug 1. PMID: 27491897; PMCID: PMC5333771.
  4. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. Epub 2017 Jul 27. PMID: 28819546; PMCID: PMC5551541.
  5. Sisein EA. Biochemistry of free radicals and antioxidants. Acad J Biosci. 2014; 2: 110–118.
  6. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012; 2012: 217037.
  7. Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792. doi: 10.1155/2013/956792. Epub 2013 Apr 29. PMID: 23738047; PMCID: PMC3657405.
  8. Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int J Mol Sci. 2019 May 15;20(10):2407. doi: 10.3390/ijms20102407. PMID: 31096608; PMCID: PMC6566277.
  9. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019 Apr 22;24(8):1583. doi: 10.3390/molecules24081583. PMID: 31013638; PMCID: PMC6514564.
  10. Kawamura T, Muraoka I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel). 2018 Sep 5;7(9):119. doi: 10.3390/antiox7090119. PMID: 30189660; PMCID: PMC6162669.
  11. Kovacic P, Pozos RS, Somanathan R, Shangari N, O'Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem. 2005;12(22):2601-23. doi: 10.2174/092986705774370646. PMID: 16248817.
  12. Johri A, Beal MF. Antioxidants in Huntington's disease. Biochim Biophys Acta. 2012 May;1822(5):664-74. doi: 10.1016/j.bbadis.2011.11.014. Epub 2011 Nov 23. PMID: 22138129; PMCID: PMC3303936.
  13. Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T, Murphy MP. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016 Feb 9;23(2):254-63. doi: 10.1016/j.cmet.2015.12.009. Epub 2016 Jan 14. PMID: 26777689.
  14. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016 Dec 15;473(24):4527-4550. doi: 10.1042/BCJ20160503C. PMID: 27941030.
  15. Hassan W, Silva CE, Mohammadzai IU, da Rocha JB, J LF. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol. 2014 Mar;12(2):120-39. doi: 10.2174/1570159X11666131120232135. PMID: 24669207; PMCID: PMC3964744.
  16. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012;2012:646354. doi: 10.1155/2012/646354. Epub 2011 Oct 2. PMID: 21977319; PMCID: PMC3184498.
  17. Ježek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel). 2018 Jan 16;7(1):13. doi: 10.3390/antiox7010013. PMID: 29337889; PMCID: PMC5789323.
  18. Zhou L, Zhang Q, Zhang P, Sun L, Peng C, Yuan Z, Cheng J. c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death. Cell Death Dis. 2017 Oct 12;8(10):e3117. doi: 10.1038/cddis.2017.524. PMID: 29022905; PMCID: PMC5682686.
  19. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012 Nov 15;322(1-2):254-62. doi: 10.1016/j.jns.2012.05.030. Epub 2012 Jun 4. PMID: 22669122.
  20. Song P, Zou MH. Roles of reactive oxygen species in physiology and pathology. In Atherosclerosis: Risks mechanisms and therapies; Wang H. Patterson C. Eds, Wiley: Hoboken: 2015; 379–392.
  21. Carocci A, Catalano A, Sinicropi MS, Genchi G. Oxidative stress and neurodegeneration: the involvement of iron. Biometals. 2018 Oct;31(5):715-735. doi: 10.1007/s10534-018-0126-2. Epub 2018 Jul 16. PMID: 30014355.
  22. Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington's Disease: an Extensive Review. Neurotox Res. 2019 Apr;35(3):739-774. doi: 10.1007/s12640-018-9989-9. Epub 2019 Jan 11. PMID: 30632085.
  23. Madireddy S, Madireddy S. Protection from the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s diseases through the mitigation of reactive oxygen species. J Neurosci Neurol Disord. 2019; 3: 148–161.
  24. Manivasagam T, Thenmozhi AJ, Bharathi MD, Sumathi T, Saravanababu C. Polyphenols and Huntington s disease: Food for Huntington’s disease. Nova Science Publishers. 2018; 39–62.
  25. Olagunju AT, Morgan JA, Aftab A, Gatchel JR, Chen P, Dols A, Sajatovic M, Regenold WT. A Review of the Evidence Base for Nutrition and Nutritional Supplements in Older Adults with Bipolar Disorder: A report from the OABD task force. J Frailty Aging. 2021;10(3):241-246. doi: 10.14283/jfa.2020.64. PMID: 34105708; PMCID: PMC8715337.
  26. Ashton MM, Kavanagh BE, Marx W, Berk M, Sarris J, Ng CH, Hopwood M, Williams LJ, Dean OM. A Systematic Review of Nutraceuticals for the Treatment of Bipolar Disorder. Can J Psychiatry. 2021 Mar;66(3):262-273. doi: 10.1177/0706743720961734. Epub 2020 Sep 23. PMID: 32966097; PMCID: PMC7958203.
  27. Sarris J, Murphy J, Mischoulon D, Papakostas GI, Fava M, Berk M, Ng CH. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am J Psychiatry. 2016 Jun 1;173(6):575-87. doi: 10.1176/appi.ajp.2016.15091228. Epub 2016 Apr 26. PMID: 27113121.
  28. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis. 2008 Nov;15(3):473-93. doi: 10.3233/jad-2008-15314. PMID: 18997301; PMCID: PMC2669703.
  29. Rizwana N, Agarwal V, Nune M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants (Basel). 2021 Dec 29;11(1):72. doi: 10.3390/antiox11010072. PMID: 35052576; PMCID: PMC8773039.
  30. Carvalho AN, Firuzi O, Gama MJ, Horssen JV, Saso L. Oxidative Stress and Antioxidants in Neurological Diseases: Is There Still Hope? Curr Drug Targets. 2017 Mar 30;18(6):705-718. doi: 10.2174/1389450117666160401120514. PMID: 27033198.
  31. Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C. Oxidative Stress and Cognitive Decline: The Neuroprotective Role of Natural Antioxidants. Front Neurosci. 2021 Oct 13;15:729757. doi: 10.3389/fnins.2021.729757. PMID: 34720860; PMCID: PMC8548611.
  32. Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017 Jan;33:311-321. doi: 10.1016/j.nut.2016.07.018. Epub 2016 Aug 8. PMID: 27746034.
  33. Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother. 2017 Feb;51(2):118-124. doi: 10.1177/1060028016673072. Epub 2016 Oct 5. PMID: 27708183.
  34. Visioli F, Burgos-Ramos E. Selected Micronutrients in Cognitive Decline Prevention and Therapy. Mol Neurobiol. 2016 Aug;53(6):4083-4093. doi: 10.1007/s12035-015-9349-1. Epub 2015 Jul 22. PMID: 26198569.
  35. Madireddy S, Madireddy S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients. 2021 Jan 25;13(2):362. doi: 10.3390/nu13020362. PMID: 33504066; PMCID: PMC7911739.
  36. Ataie A, Shadifar M, Ataee R. Polyphenolic Antioxidants and Neuronal Regeneration. Basic Clin Neurosci. 2016 Apr;7(2):81-90. doi: 10.15412/J.BCN.03070201. PMID: 27303602; PMCID: PMC4892323.
  37. Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol. 2019 Mar;234(3):2447-2459. doi: 10.1002/jcp.27289. Epub 2018 Sep 6. PMID: 30187490.
  38. Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol. 2019 Mar;234(3):2447-2459. doi: 10.1002/jcp.27289. Epub 2018 Sep 6. PMID: 30187490.
  39. Lim H, Heo MY, Kim HP. Flavonoids: Broad Spectrum Agents on Chronic Inflammation. Biomol Ther (Seoul). 2019 May 1;27(3):241-253. doi: 10.4062/biomolther.2019.034. PMID: 31006180; PMCID: PMC6513185.
  40. Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res. 2020 Nov;43(11):1128-1143. doi: 10.1007/s12272-020-01292-5. Epub 2020 Nov 22. PMID: 33225387.
  41. Chellappa SL, Aeschbach D. Sleep and anxiety: From mechanisms to interventions. Sleep Med Rev. 2022 Feb;61:101583. doi: 10.1016/j.smrv.2021.101583. Epub 2021 Dec 8. PMID: 34979437.
  42. Kandola A, Stubbs B. Exercise and Anxiety. Adv Exp Med Biol. 2020;1228:345-352. doi: 10.1007/978-981-15-1792-1_23. PMID: 32342469.
  43. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005 Jun;62(6):617-27. doi: 10.1001/archpsyc.62.6.617. Erratum in: Arch Gen Psychiatry. 2005 Jul;62(7):709. Merikangas, Kathleen R [added]. PMID: 15939839; PMCID: PMC2847357.
  44. Mohale DS, Tripathi AS, Shrirao AV, Jawarkar AG, Chandewar AV. Evaluation of antioxidant effect of Nerium indicum in anxious rats. Indian J Pharmacol. 2016 Jul-Aug;48(4):430-433. doi: 10.4103/0253-7613.186201. PMID: 27756956; PMCID: PMC4980933.
  45. Chavira DA, Stein MB, Bailey K, Stein MT. Child anxiety in primary care: prevalent but untreated. Depress Anxiety. 2004;20(4):155-64. doi: 10.1002/da.20039. PMID: 15643639.
  46. Guney E, Fatih Ceylan M, Tektas A, Alisik M, Ergin M, Goker Z, Senses Dinc G, Ozturk O, Korkmaz A, Eker S, Kizilgun M, Erel O. Oxidative stress in children and adolescents with anxiety disorders. J Affect Disord. 2014 Mar;156:62-6. doi: 10.1016/j.jad.2013.11.016. Epub 2013 Dec 1. PMID: 24326157.
  47. National Institutes of Mental Health (NIMH). Prevalence of any anxiety disorder among adults.. www.nimh.nih.gov/health/statistics/any–anxiety–disorder.shtml#part_155094. 2019.
  48. Berggren N. Anxiety and apprehension in visual working memory performance: no change to capacity, but poorer distractor filtering. Anxiety Stress Coping. 2020 May;33(3):299-310. doi: 10.1080/10615806.2020.1736899. Epub 2020 Mar 4. PMID: 32126798.
  49. Grases G, Colom MA, Fernandez RA, Costa-Bauzá A, Grases F. Evidence of higher oxidative status in depression and anxiety. Oxid Med Cell Longev. 2014;2014:430216. doi: 10.1155/2014/430216. Epub 2014 Apr 29. PMID: 24876911; PMCID: PMC4020168.
  50. Sweet DM, Gentile D, He L. Communication Apprehension and Willingness to Communicate in Veterinary Medicine Students: Implications for Mindfulness and Communication Training. Health Commun. 2021 Jun 3:1-9. doi: 10.1080/10410236.2021.1930881. Epub ahead of print. PMID: 34080497.
  51. Comer JS, Pincus DB, Hofmann SG. Generalized anxiety disorder and the proposed associated symptoms criterion change for DSM-5 in a treatment-seeking sample of anxious youth. Depress Anxiety. 2012 Dec;29(12):994-1003. doi: 10.1002/da.21999. Epub 2012 Sep 5. PMID: 22952043; PMCID: PMC4224948.
  52. Terlizzi EP, Villarroel MA. Symptoms of Generalized Anxiety Disorder Among Adults: United States, 2019. NCHS Data Brief. 2020 Sep;(378):1-8. PMID: 33054928.
  53. de Oliveira IJ, de Souza VV, Motta V, Da–Silva SL. Effects of oral vitamin C supplementation on anxiety in students: A double–blind, randomized, placebo–controlled trial. Pak J Biol Sci. 2015; 18: 11–8.
  54. Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients. 2017 Jun 27;9(7):659. doi: 10.3390/nu9070659. PMID: 28654017; PMCID: PMC5537779.
  55. Moritz B, Schmitz AE, Rodrigues ALS, Dafre AL, Cunha MP. The role of vitamin C in stress-related disorders. J Nutr Biochem. 2020 Nov;85:108459. doi: 10.1016/j.jnutbio.2020.108459. Epub 2020 Jul 3. PMID: 32745879.
  56. Mazloom Z, Ekramzadeh M, Hejazi N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak J Biol Sci. 2013 Nov 15;16(22):1597-600. doi: 10.3923/pjbs.2013.1597.1600. PMID: 24511708.
  57. Hughes RN, Lowther CL, van Nobelen M. Prolonged treatment with vitamins C and E separately and together decreases anxiety-related open-field behavior and acoustic startle in hooded rats. Pharmacol Biochem Behav. 2011 Jan;97(3):494-9. doi: 10.1016/j.pbb.2010.10.010. Epub 2010 Oct 28. PMID: 21036190.
  58. Boyle NB, Lawton C, Dye L. The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients. 2017 Apr 26;9(5):429. doi: 10.3390/nu9050429. PMID: 28445426; PMCID: PMC5452159.
  59. Macías-Carballo M, Rosas-Navarro S, López-Meraz ML, Beltran-Parrazal L, Morgado-Valle C. Anxiolytic effect of chronic intake of supplemental magnesium chloride in rat. Behav Brain Res. 2021 Sep 10;413:113460. doi: 10.1016/j.bbr.2021.113460. Epub 2021 Jul 10. PMID: 34252502.
  60. Carroll D, Ring C, Suter M, Willemsen G. The effects of an oral multivitamin combination with calcium, magnesium, and zinc on psychological well-being in healthy young male volunteers: a double-blind placebo-controlled trial. Psychopharmacology (Berl). 2000 Jun;150(2):220-5. doi: 10.1007/s002130000406. PMID: 10907676.
  61. De Souza MC, Walker AF, Robinson PA, Bolland K. A synergistic effect of a daily supplement for 1 month of 200 mg magnesium plus 50 mg vitamin B6 for the relief of anxiety-related premenstrual symptoms: a randomized, double-blind, crossover study. J Womens Health Gend Based Med. 2000 Mar;9(2):131-9. doi: 10.1089/152460900318623. PMID: 10746516.
  62. Hanus M, Lafon J, Mathieu M. Double-blind, randomised, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders. Curr Med Res Opin. 2004 Jan;20(1):63-71. doi: 10.1185/030079903125002603. PMID: 14741074.
  63. Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362-70. doi: 10.1016/j.mehy.2006.01.047. Epub 2006 Mar 20. PMID: 16542786.
  64. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One. 2014 May 7;9(5):e96905. doi: 10.1371/journal.pone.0096905. PMID: 24805797; PMCID: PMC4013121.
  65. Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010 Jul 15;68(2):140-7. doi: 10.1016/j.biopsych.2010.03.018. Epub 2010 May 10. PMID: 20452573.
  66. Polokowski AR, Shakil H, Carmichael CL, Reigada LC. Omega-3 fatty acids and anxiety: A systematic review of the possible mechanisms at play. Nutr Neurosci. 2020 Jul;23(7):494-504. doi: 10.1080/1028415X.2018.1525092. Epub 2018 Sep 28. PMID: 30264663.
  67. Robinson DG, Gallego JA, John M, Hanna LA, Zhang JP, Birnbaum ML, Greenberg J, Naraine M, Peters BD, McNamara RK, Malhotra AK, Szeszko PR. A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: Results from a 16 week randomized placebo-controlled trial for participants concurrently treated with risperidone. Schizophr Res. 2019 Feb;204:295-303. doi: 10.1016/j.schres.2018.09.006. Epub 2018 Sep 19. PMID: 30241990; PMCID: PMC6402999.
  68. Su KP, Tseng PT, Lin PY, Okubo R, Chen TY, Chen YW, Matsuoka YJ. Association of Use of Omega-3 Polyunsaturated Fatty Acids With Changes in Severity of Anxiety Symptoms: A Systematic Review and Meta-analysis. JAMA Netw Open. 2018 Sep 7;1(5):e182327. doi: 10.1001/jamanetworkopen.2018.2327. PMID: 30646157; PMCID: PMC6324500.
  69. Terauchi M, Odai T, Hirose A, Kato K, Miyasaka N. Chilliness in Japanese middle-aged women is associated with anxiety and low n-3 fatty acid intake. Climacteric. 2020 Apr;23(2):178-183. doi: 10.1080/13697137.2019.1653841. Epub 2019 Sep 12. PMID: 31512534.
  70. Green P, Hermesh H, Monselise A, Marom S, Presburger G, Weizman A. Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder. Eur Neuropsychopharmacol. 2006 Feb;16(2):107-13. doi: 10.1016/j.euroneuro.2005.07.005. Epub 2005 Oct 21. PMID: 16243493.
  71. McNamara RK, Liu Y. Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder. J Affect Disord. 2011 Mar;129(1-3):359-63. doi: 10.1016/j.jad.2010.08.021. Epub 2010 Sep 21. PMID: 20863572; PMCID: PMC3023006.
  72. Parletta N, Zarnowiecki D, Cho J, Wilson A, Procter N, Gordon A, Bogomolova S, O'Dea K, Strachan J, Ballestrin M, Champion A, Meyer BJ. People with schizophrenia and depression have a low omega-3 index. Prostaglandins Leukot Essent Fatty Acids. 2016 Jul;110:42-7. doi: 10.1016/j.plefa.2016.05.007. Epub 2016 May 13. PMID: 27255642.
  73. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R. Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun. 2011 Nov;25(8):1725-34. doi: 10.1016/j.bbi.2011.07.229. Epub 2011 Jul 19. PMID: 21784145; PMCID: PMC3191260.
  74. Schefft C, Kilarski LL, Bschor T, Köhler S. Efficacy of adding nutritional supplements in unipolar depression: A systematic review and meta-analysis. Eur Neuropsychopharmacol.2017Nov;27(11):10901109.doi:10.1016/j.euroneuro.2017.07.004. Epub 2017 Oct 5. PMID: 28988944.
  75. Li F, Liu X, Zhang D. Fish consumption and risk of depression: a meta-analysis. J Epidemiol Community Health. 2016 Mar;70(3):299-304. doi: 10.1136/jech-2015-206278. Epub 2015 Sep 10. PMID: 26359502.
  76. Natacci L, M Marchioni D, C Goulart A, Nunes MA, B Moreno A, O Cardoso L, Giatti L, B Molina MDC, S Santos I, Brunoni AR, A Lotufo P, M Bensenor I. Omega 3 Consumption and Anxiety Disorders: A Cross-Sectional Analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients. 2018 May 24;10(6):663. doi: 10.3390/nu10060663. PMID: 29882923; PMCID: PMC6024589.
  77. Yehuda S, Rabinovitz S, Mostofsky DI. Mixture of essential fatty acids lowers test anxiety. Nutr Neurosci. 2005 Aug;8(4):265-7. doi: 10.1080/10284150500445795. PMID: 16491653.
  78. Buydens-Branchey L, Branchey M, Hibbeln JR. Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Feb 15;32(2):568-75. doi: 10.1016/j.pnpbp.2007.10.020. Epub 2007 Nov 1. PMID: 18060675; PMCID: PMC2275606.
  79. Haberka M, Mizia-Stec K, Mizia M, Gieszczyk K, Chmiel A, Sitnik-Warchulska K, Gąsior Z. Effects of n-3 polyunsaturated fatty acids on depressive symptoms, anxiety and emotional state in patients with acute myocardial infarction. Pharmacol Rep. 2013;65(1):59-68. doi: 10.1016/s1734-1140(13)70964-2. PMID: 23563024.
  80. Pizarro Meléndez GP, Valero-Jara V, Acevedo-Hernández P, Thomas-Valdés S. Impact of polyphenols on stress and anxiety: a systematic review of molecular mechanisms and clinical evidence. Crit Rev Food Sci Nutr. 2022 Sep 26:1-18. doi: 10.1080/10408398.2022.2122925. Epub ahead of print. PMID: 36154755.
  81. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine. 2008 Mar;4(1):70-8. doi: 10.1016/j.nano.2007.12.001. Epub 2008 Jan 30. PMID: 18249157.
  82. Shayganfard M. Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci. 2020 Nov 7;10(1):128. doi: 10.1186/s13578-020-00491-3. PMID: 33292508; PMCID: PMC7648996.
  83. Jia S, Hou Y, Wang D, Zhao X. Flavonoids for depression and anxiety: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022 Apr 9:1-11. doi: 10.1080/10408398.2022.2057914. Epub ahead of print. PMID: 35400250.
  84. Rashno M, Ghaderi S, Nesari A, Khorsandi L, Farbood Y, Sarkaki A. Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: Insights into underlying mechanisms. Psychopharmacology (Berl). 2020 Jun;237(6):1607-1619. doi: 10.1007/s00213-020-05482-3. Epub 2020 Feb 22. PMID: 32088834.
  85. Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS, Li XM. PI3K-AKT Signaling Activation and Icariin: The Potential Effects on the Perimenopausal Depression-Like Rat Model. Molecules. 2019 Oct 15;24(20):3700. doi: 10.3390/molecules24203700. PMID: 31618892; PMCID: PMC6832648.
  86. Samad N, Saleem A, Yasmin F, Shehzad MA. Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res. 2018 Nov 14;67(5):795-808. doi: 10.33549/physiolres.933776. Epub 2018 Jul 25. PMID: 30044120.
  87. Chandrasekaran V, Brennan-Olsen SL, Stuart AL, Pasco JA, Berk M, Hodge JM, Williams LJ. Bipolar disorder and bone health: A systematic review. J Affect Disord. 2019 Apr 15;249:262-269. doi: 10.1016/j.jad.2019.02.013. Epub 2019 Feb 6. PMID: 30784723.
  88. Gao W, Cui D, Jiao Q, Su L, Yang R, Lu G. Brain structural alterations in pediatric bipolar disorder patients with and without psychotic symptoms. J Affect Disord. 2021 May 1;286:87-93. doi: 10.1016/j.jad.2021.02.077. Epub 2021 Mar 4. PMID: 33714175.
  89. Knorr U, Simonsen AH, Roos P, Weimann A, Henriksen T, Christensen EM, Vinberg M, Mikkelsen RL, Kirkegaard T, Jensen RN, Akhøj M, Forman J, Poulsen HE, Hasselbalch SG, Kessing LV. Cerebrospinal fluid oxidative stress metabolites in patients with bipolar disorder and healthy controls: a longitudinal case-control study. Transl Psychiatry. 2019 Nov 28;9(1):325. doi: 10.1038/s41398-019-0664-6. PMID: 31780642; PMCID: PMC6882849.
  90. Lucidi L, Pettorruso M, Vellante F, Di Carlo F, Ceci F, Santovito MC, Di Muzio I, Fornaro M, Ventriglio A, Tomasetti C, Valchera A, Gentile A, Kim YK, Martinotti G, Fraticelli S, Di Giannantonio M, De Berardis D. Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. Int J Mol Sci. 2021 Apr 2;22(7):3723. doi: 10.3390/ijms22073723. PMID: 33918462; PMCID: PMC8038247.
  91. Rantala MJ, Luoto S, Borráz-León JI, Krams I. Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci Biobehav Rev. 2021 Mar;122:28-37. doi: 10.1016/j.neubiorev.2020.12.031. Epub 2021 Jan 6. Erratum in: Neurosci Biobehav Rev. 2021 Jul;126:528. PMID: 33421542.
  92. Shen SH, Lee SH. A Case of Lung Cancer with Brain Metastasis following Late-Onset Bipolar Disorder. Behav Neurol. 2021 Apr 1;2021:8880539. doi: 10.1155/2021/8880539. PMID: 33868511; PMCID: PMC8034995.
  93. Young AH, Juruena MF. The Neurobiology of Bipolar Disorder. Curr Top Behav Neurosci. 2021;48:1-20. doi: 10.1007/7854_2020_179. PMID: 33442840.
  94. Anderson G, Maes M. Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep. 2015 Feb;17(2):8. doi: 10.1007/s11920-014-0541-1. PMID: 25620790.
  95. Bonnín CDM, Reinares M, Martínez-Arán A, Jiménez E, Sánchez-Moreno J, Solé B, Montejo L, Vieta E. Improving Functioning, Quality of Life, and Well-being in Patients With Bipolar Disorder. Int J Neuropsychopharmacol. 2019 Aug 1;22(8):467-477. doi: 10.1093/ijnp/pyz018. PMID: 31093646; PMCID: PMC6672628.
  96. Cardoso T, Bauer IE, Meyer TD, Kapczinski F, Soares JC. Neuroprogression and Cognitive Functioning in Bipolar Disorder: A Systematic Review. Curr Psychiatry Rep. 2015 Sep;17(9):75. doi: 10.1007/s11920-015-0605-x. PMID: 26257147.
  97. Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry. 2020 Mar;25(3):544-559. doi: 10.1038/s41380-019-0634-7. Epub 2020 Jan 6. PMID: 31907381.
  98. Kessing LV, Andersen PK. Evidence for clinical progression of unipolar and bipolar disorders. Acta Psychiatr Scand. 2017 Jan;135(1):51-64. doi: 10.1111/acps.12667. Epub 2016 Nov 10. PMID: 27858964.
  99. Morris G, Walder KR, Berk M, Marx W, Walker AJ, Maes M, Puri BK. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep. 2020 Jul;47(7):5587-5620. doi: 10.1007/s11033-020-05590-5. Epub 2020 Jun 20. PMID: 32564227.
  100. O'Rourke N, Sixsmith A, Kirshner G, Osher Y. Perceived cognitive failures and quality of life for older adults with bipolar disorder. J Affect Disord. 2021 May 15;287:433-440. doi: 10.1016/j.jad.2021.03.024. Epub 2021 Mar 13. PMID: 33862304.
  101. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, Gao K, Miskowiak KW, Grande I. Bipolar disorders. Nat Rev Dis Primers. 2018 Mar 8;4:18008. doi: 10.1038/nrdp.2018.8. PMID: 29516993.
  102. Cyrino LAR, Delwing-de Lima D, Ullmann OM, Maia TP. Concepts of Neuroinflammation and Their Relationship With Impaired Mitochondrial Functions in Bipolar Disorder. Front Behav Neurosci. 2021 Feb 26;15:609487. doi: 10.3389/fnbeh.2021.609487. PMID: 33732117; PMCID: PMC7959852.
  103. Liu X, Ma X, Wang W, Zhang J, Sun X, Luo X, Zhang Y. The functional impairment of different subtypes and occupational states in euthymic patients with bipolar disorder. BMC Psychiatry. 2021 May 7;21(1):240. doi: 10.1186/s12888-021-03242-x. PMID: 33957876; PMCID: PMC8103625.
  104. Clemente AS, Diniz BS, Nicolato R, Kapczinski FP, Soares JC. Bipolar disorder prevalence: A systematic review and meta–analysis of the literature. Braz J Psychiatry. 2015; 37: 155–161. 
  105. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016 Apr 9;387(10027):1561-1572. doi: 10.1016/S0140-6736(15)00241-X. Epub 2015 Sep 18. PMID: 26388529.
  106. Kurtz M, Mohring P, Förster K, Bauer M, Kanske P. Deficits in explicit emotion regulation in bipolar disorder: a systematic review. Int J Bipolar Disord. 2021 May 3;9(1):15. doi: 10.1186/s40345-021-00221-9. PMID: 33937951; PMCID: PMC8089068.
  107. Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast. 2017;2017:7014146. doi: 10.1155/2017/7014146. Epub 2017 Apr 26. PMID: 28529805; PMCID: PMC5424494.
  108. Dell'Osso B, Dobrea C, Cremaschi L, Buoli M, Miller S, Ketter TA, Altamura AC. Italian Bipolar II vs I patients have better individual functioning, in spite of overall similar illness severity. CNS Spectr. 2017 Aug;22(4):325-332. doi: 10.1017/S1092852915000887. Epub 2016 Feb 24. PMID: 26905615.
  109. Gandhi AB, Kaleem I, Alexander J, Hisbulla M, Kannichamy V, Antony I, Mishra V, Banerjee A, Khan S. Neuroplasticity Improves Bipolar Disorder: A Review. Cureus. 2020 Oct 29;12(10):e11241. doi: 10.7759/cureus.11241. PMID: 33274124; PMCID: PMC7707145.
  110. Cao B, Passos IC, Mwangi B, Bauer IE, Zunta-Soares GB, Kapczinski F, Soares JC. Hippocampal volume and verbal memory performance in late-stage bipolar disorder. J Psychiatr Res. 2016 Feb;73:102-107. doi: 10.1016/j.jpsychires.2015.12.012. Epub 2015 Dec 15. PMID: 26714201; PMCID: PMC4985176.
  111. Cullen B, Ward J, Graham NA, Deary IJ, Pell JP, Smith DJ, Evans JJ. Prevalence and correlates of cognitive impairment in euthymic adults with bipolar disorder: A systematic review. J Affect Disord. 2016 Nov 15;205:165-181. doi: 10.1016/j.jad.2016.06.063. Epub 2016 Jul 5. PMID: 27449549.
  112. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, van Haren NEM, Horn NR, Freimer NB, Gruber O, Schofield PR, Mitchell PB, Kahn RS, Lenroot R, Machado-Vieira R, Ophoff RA, Sarró S, Frangou S, Satterthwaite TD, Hajek T, Dannlowski U, Malt UF, Arolt V, Gattaz WF, Drevets WC, Caseras X, Agartz I, Thompson PM, Andreassen OA. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018 Apr;23(4):932-942. doi: 10.1038/mp.2017.73. Epub 2017 May 2. PMID: 28461699; PMCID: PMC5668195.
  113. Kapczinski NS, Mwangi B, Cassidy RM, Librenza-Garcia D, Bermudez MB, Kauer-Sant'anna M, Kapczinski F, Passos IC. Neuroprogression and illness trajectories in bipolar disorder. Expert Rev Neurother. 2017 Mar;17(3):277-285. doi: 10.1080/14737175.2017.1240615. Epub 2016 Oct 3. PMID: 27659841.
  114. van den Ameele S, Fuchs D, Coppens V, de Boer P, Timmers M, Sabbe B, Morrens M. Markers of Inflammation and Monoamine Metabolism Indicate Accelerated Aging in Bipolar Disorder. Front Psychiatry. 2018 Jun 14;9:250. doi: 10.3389/fpsyt.2018.00250. PMID: 29962973; PMCID: PMC6010913.
  115. Data-Franco J, Singh A, Popovic D, Ashton M, Berk M, Vieta E, Figueira ML, Dean OM. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Jan 4;72:73-86. doi: 10.1016/j.pnpbp.2016.09.004. Epub 2016 Sep 9. PMID: 27616052.
  116. Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav. 2019 Feb;177:12-19. doi: 10.1016/j.pbb.2018.12.006. Epub 2018 Dec 24. PMID: 30586559.
  117. Isgren A, Sellgren C, Ekman CJ, Holmén-Larsson J, Blennow K, Zetterberg H, Jakobsson J, Landén M. Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes. Brain Behav Immun. 2017 Oct;65:195-201. doi: 10.1016/j.bbi.2017.05.002. Epub 2017 May 5. PMID: 28483660.
  118. Juruena MF, Jelen LA, Young AH, Cleare AJ. New Pharmacological Interventions in Bipolar Disorder. Curr Top Behav Neurosci. 2021;48:303-324. doi: 10.1007/7854_2020_181. PMID: 33547595.
  119. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22-34. doi: 10.1038/nri.2015.5. PMID: 26711676; PMCID: PMC5542678.
  120. Sayana P, Pinjari OF, Giridharan VV, Ahmad N, da Rosa MI. Postmortem evidence of neuroinflammation in bipolar disorder: A systematic review. J Affect Disord. 2019; 254: 129.
  121. Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci. 2017 Feb;71(2):77-103. doi: 10.1111/pcn.12476. Epub 2017 Jan 6. PMID: 27800654.
  122. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci. 2018 Sep 27;12:323. doi: 10.3389/fncel.2018.00323. PMID: 30319362; PMCID: PMC6170615. 
  123. Ferro A, Bonivento C, Delvecchio G, Bellani M, Perlini C, Dusi N, Marinelli V, Ruggeri M, Altamura AC, Crespo-Facorro B, Brambilla P. Longitudinal investigation of the parietal lobe anatomy in bipolar disorder and its association with general functioning. Psychiatry Res Neuroimaging. 2017 Sep 30;267:22-31. doi: 10.1016/j.pscychresns.2017.06.010. Epub 2017 Jun 20. PMID: 28732208.
  124. Boerman R, Cohen D, Schulte PF, Nugter A. Prevalence of Vitamin D Deficiency in Adult Outpatients With Bipolar Disorder or Schizophrenia. J Clin Psychopharmacol. 2016 Dec;36(6):588-592. doi: 10.1097/JCP.0000000000000580. PMID: 27662458.
  125. Naifar M, Maalej Bouali M, Guidara W, Ellouze AS, Jmal K, Omri S, Messedi M, Zouari L, Elleuch A, Maalej M, Chaabouni K, Charfi N, Turki M, Jihène BT, Ayadi F. Vulnérabilité au Trouble Bipolaire: La Piste de la Vitamine D [Bipolar disorder vulnerability: The vitamin D path]. Can J Psychiatry. 2020 Mar;65(3):184-192. French. doi: 10.1177/0706743719870513. Epub 2019 Aug 21. PMID: 31434497; PMCID: PMC7019462.
  126. Cereda G, Enrico P, Ciappolino V, Delvecchio G, Brambilla P. The role of vitamin D in bipolar disorder: Epidemiology and influence on disease activity. J Affect Disord. 2021 Jan 1;278:209-217. doi: 10.1016/j.jad.2020.09.039. Epub 2020 Sep 12. PMID: 32971313.
  127. Marsh WK, Penny JL, Rothschild AJ. Vitamin D supplementation in bipolar depression: A double blind placebo controlled trial. J Psychiatr Res. 2017 Dec;95:48-53. doi: 10.1016/j.jpsychires.2017.07.021. Epub 2017 Jul 22. PMID: 28777983.
  128. Scorza FA, Almeida AG, Scorza CA, Moret MA, Finsterer J. Bipolar Disorder: The Vitamin D Debate. J Affect Disord. 2021 May 1;286:338-339. doi: 10.1016/j.jad.2021.02.073. Epub 2021 Mar 4. PMID: 33773216.
  129. Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020 May 27;12(6):1562. doi: 10.3390/nu12061562. PMID: 32471251; PMCID: PMC7352291.
  130. Koga N, Ogura J, Yoshida F, Hattori K, Hori H, Aizawa E, Ishida I, Kunugi H. Altered polyunsaturated fatty acid levels in relation to proinflammatory cytokines, fatty acid desaturase genotype, and diet in bipolar disorder. Transl Psychiatry. 2019 Aug 27;9(1):208. doi: 10.1038/s41398-019-0536-0. PMID: 31455761; PMCID: PMC6711984.
  131. McNamara RK, Welge JA. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder. Bipolar Disord. 2016 May;18(3):300-6. doi: 10.1111/bdi.12386. Epub 2016 Apr 18. PMID: 27087497; PMCID: PMC4882238.
  132. Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress-Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci. 2022 Feb 6;23(3):1844. doi: 10.3390/ijms23031844. PMID: 35163764; PMCID: PMC8836876.
  133. Fusar-Poli L, Surace T, Vanella A, Meo V, Patania F, Furnari R, Signorelli MS, Aguglia E. The effect of adjunctive nutraceuticals in bipolar disorder: A systematic review of randomized placebo-controlled trials. J Affect Disord. 2019 Jun 1;252:334-349. doi: 10.1016/j.jad.2019.04.039. Epub 2019 Apr 8. PMID: 30999090.
  134. Balanzá-Martínez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabarés-Seisdedos R, Kapczinski F. Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother. 2011 Jul;11(7):1029-47. doi: 10.1586/ern.11.42. PMID: 21721919.
  135. Wilczyńska A. Kwasy tluszczowe w leczeniu i zapobieganiu depresji [Fatty acids in treatment and prevention of depression]. Psychiatr Pol. 2013 Jul-Aug;47(4):657-66. Polish. PMID: 24946472.
  136. Rakofsky JJ, Dunlop BW. Review of nutritional supplements for the treatment of bipolar depression. Depress Anxiety. 2014 May;31(5):379-90. doi: 10.1002/da.22220. Epub 2013 Dec 18. PMID: 24353094.
  137. Saunders EF, Ramsden CE, Sherazy MS, Gelenberg AJ, Davis JM, Rapoport SI. Omega-3 and Omega-6 Polyunsaturated Fatty Acids in Bipolar Disorder: A Review of Biomarker and Treatment Studies. J Clin Psychiatry. 2016 Oct;77(10):e1301-e1308. doi: 10.4088/JCP.15r09925. PMID: 27631140; PMCID: PMC9398217.
  138. Sarris J. Clinical use of nutraceuticals in the adjunctive treatment of depression in mood disorders. Australas Psychiatry. 2017 Aug;25(4):369-372. doi: 10.1177/1039856216689533. Epub 2017 Jan 31. PMID: 28135835.
  139. McPhilemy G, Byrne F, Waldron M, Hibbeln JR, Davis J, McDonald C, Hallahan B. A 52-week prophylactic randomised control trial of omega-3 polyunsaturated fatty acids in bipolar disorder. Bipolar Disord. 2021 Nov;23(7):697-706. doi: 10.1111/bdi.13037. Epub 2021 Jan 10. PMID: 33340432.
  140. Ciappolino V, DelVecchio G, Prunas C, Andreella A, Finos L, Caletti E, Siri F, Mazzocchi A, Botturi A, Turolo S, Agostoni C, Brambilla P. The Effect of DHA Supplementation on Cognition in Patients with Bipolar Disorder: An Exploratory Randomized Control Trial. Nutrients. 2020 Mar 6;12(3):708. doi: 10.3390/nu12030708. PMID: 32155883; PMCID: PMC7146155.
  141. Siwek M, Styczeń K, Sowa-Kućma M, Dudek D, Reczyński W, Szewczyk B, Misztak P, Opoka W, Topór-Mądry R, Nowak G. The serum concentration of magnesium as a potential state marker in patients with diagnosis of bipolar disorder. Psychiatr Pol. 2015;49(6):1277-87. English, Polish. doi: 10.12740/PP/OnlineFirst/42047. PMID: 26909402.
  142. Siwek M, Styczeń K, Sowa-Kućma M, Dudek D, Reczyński W, Szewczyk B, Misztak P, Opoka W, Topór-Mądry R, Nowak G, Rybakowski JK. The serum concentration of copper in bipolar disorder. Psychiatr Pol. 2017 Jun 18;51(3):469-481. English, Polish. doi: 10.12740/PP/OnlineFirst/65250. Epub 2016 Nov 4. PMID: 28866717.
  143. Dudek KA, Dion-Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci. 2021 Jan;53(1):183-221. doi: 10.1111/ejn.14547. Epub 2019 Sep 13. PMID: 31421056; PMCID: PMC7891571.
  144. Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients. 2018 Jun 6;10(6):730. doi: 10.3390/nu10060730. PMID: 29882776; PMCID: PMC6024559.
  145. Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, Kelly P, Khan S, Utukuri M, Laird Y, Mok A, Smith A, Tainio M, Brage S, Woodcock J. Association Between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2022 Jun 1;79(6):550-559. doi: 10.1001/jamapsychiatry.2022.0609. PMID: 35416941; PMCID: PMC9008579.
  146. Wigner P, Czarny P, Galecki P, Sliwinski T. Oxidative and Nitrosative Stress as Well as the Tryptophan Catabolites Pathway in Depressive Disorders. Psychiatr Danub. 2017 Dec;29(4):394-400. doi: 10.24869/psyd.2017.394. PMID: 29197195.
  147. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, de Graaf R, Demyttenaere K, Hu C, Iwata N, Karam AN, Kaur J, Kostyuchenko S, Lépine JP, Levinson D, Matschinger H, Mora ME, Browne MO, Posada-Villa J, Viana MC, Williams DR, Kessler RC. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011 Jul 26;9:90. doi: 10.1186/1741-7015-9-90. PMID: 21791035; PMCID: PMC3163615.
  148. Komsiiska D, Petkov Y. The role of oxidative stress in etiopathogenesis of depression. Trakia J Sci. 2019; 1: 81–93.
  149. Réus GZ, Carlessi AS, Silva RH, Ceretta LB, Quevedo J. Relationship of Oxidative Stress as a Link between Diabetes Mellitus and Major Depressive Disorder. Oxid Med Cell Longev. 2019 Mar 3;2019:8637970. doi: 10.1155/2019/8637970. PMID: 30944699; PMCID: PMC6421821.
  150. Bembnowska M, Jośko J. Depressive behaviours among adolescents as a public health problem. Zdr Publ. 2011; 121: 4260430.
  151. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Fifth Edition (DSM–5). Arlington VA USA American Psychiatric Association. 2013.
  152. Ghanean H, Ceniti AK, Kennedy SH. Fatigue in Patients with Major Depressive Disorder: Prevalence, Burden and Pharmacological Approaches to Management. CNS Drugs. 2018 Jan;32(1):65-74. doi: 10.1007/s40263-018-0490-z. PMID: 29383573.
  153. Bondi CO, Taha AY, Tock JL, Totah NK, Cheon Y, Torres GE, Rapoport SI, Moghaddam B. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry. 2014 Jan 1;75(1):38-46. doi: 10.1016/j.biopsych.2013.06.007. Epub 2013 Jul 25. PMID: 23890734; PMCID: PMC3858419.
  154. Choi JE, Borkowski K, Newman JW, Park Y. N-3 PUFA improved post-menopausal depression induced by maternal separation and chronic mild stress through serotonergic pathway in rats-effect associated with lipid mediators. J Nutr Biochem. 2021 May;91:108599. doi: 10.1016/j.jnutbio.2021.108599. Epub 2021 Feb 3. PMID: 33548474.
  155. DeMar JC Jr, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res. 2006 Jan;47(1):172-80. doi: 10.1194/jlr.M500362-JLR200. Epub 2005 Oct 6. PMID: 16210728.
  156. Mocking RJT, Steijn K, Roos C, Assies J, Bergink V, Ruhé HG, Schene AH. Omega-3 Fatty Acid Supplementation for Perinatal Depression: A Meta-Analysis. J Clin Psychiatry. 2020 Sep 1;81(5):19r13106. doi: 10.4088/JCP.19r13106. PMID: 32898343.
  157. Thurfah JN, Christine, Bagaskhara PP, Alfian SD, Puspitasari IM. Dietary supplementations and depression. J Multidiscip Healthc. 2022; 15: 1121–1141.
  158. Larrieu T, Hilal ML, Fourrier C, De Smedt-Peyrusse V, Sans N, Capuron L, Layé S. Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl Psychiatry. 2014 Sep 9;4(9):e437. doi: 10.1038/tp.2014.77. Erratum in: Transl Psychiatry. 2014;4:e468. Hilal, L M [corrected to Hilal, M L]; N, Sans [corrected to Sans, N]. PMID: 25203168; PMCID: PMC4203007.
  159. Morgese MG, Tucci P, Mhillaj E, Bove M, Schiavone S, Trabace L, Cuomo V. Lifelong Nutritional Omega-3 Deficiency Evokes Depressive-Like State Through Soluble Beta Amyloid. Mol Neurobiol. 2017 Apr;54(3):2079-2089. doi: 10.1007/s12035-016-9809-2. Epub 2016 Feb 29. PMID: 26924315; PMCID: PMC5355522.
  160. Manduca A, Bara A, Larrieu T, Lassalle O, Joffre C, Layé S, Manzoni OJ. Amplification of mGlu5-Endocannabinoid Signaling Rescues Behavioral and Synaptic Deficits in a Mouse Model of Adolescent and Adult Dietary Polyunsaturated Fatty Acid Imbalance. J Neurosci. 2017 Jul 19;37(29):6851-6868. doi: 10.1523/JNEUROSCI.3516-16.2017. Epub 2017 Jun 19. PMID: 28630250; PMCID: PMC6705718.
  161. Grosso G, Micek A, Marventano S, Castellano S, Mistretta A, Pajak A, Galvano F. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J Affect Disord. 2016 Nov 15;205:269-281. doi: 10.1016/j.jad.2016.08.011. Epub 2016 Aug 16. PMID: 27544316.
  162. McNamara RK, Jandacek R, Tso P, Dwivedi Y, Ren X, Pandey GN. Lower docosahexaenoic acid concentrations in the postmortem prefrontal cortex of adult depressed suicide victims compared with controls without cardiovascular disease. J Psychiatr Res. 2013 Sep;47(9):1187-91. doi: 10.1016/j.jpsychires.2013.05.007. Epub 2013 Jun 4. PMID: 23759469; PMCID: PMC3710518.
  163. Barberger-Gateau P, Jutand MA, Letenneur L, Larrieu S, Tavernier B, Berr C; 3C Study Group. Correlates of regular fish consumption in French elderly community dwellers: data from the Three-City study. Eur J Clin Nutr. 2005 Jul;59(7):817-25. doi: 10.1038/sj.ejcn.1602145. PMID: 15900310.
  164. Timonen M, Horrobin D, Jokelainen J, Laitinen J, Herva A, Räsänen P. Fish consumption and depression: the Northern Finland 1966 birth cohort study. J Affect Disord. 2004 Nov 1;82(3):447-52. doi: 10.1016/j.jad.2004.02.002. PMID: 15555697.
  165. Martins JG, Bentsen H, Puri BK. Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol Psychiatry. 2012 Dec;17(12):1144-9; discussion 1163-7. doi: 10.1038/mp.2012.25. Epub 2012 Apr 10. PMID: 22488258.
  166. Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, SanGiovanni JP, Davis JM. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry. 2016 Sep;209(3):192-201. doi: 10.1192/bjp.bp.114.160242. Epub 2016 Apr 21. PMID: 27103682; PMCID: PMC9406129.
  167. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry. 2002 Oct;59(10):913-9. doi: 10.1001/archpsyc.59.10.913. PMID: 12365878.
  168. Nemets B, Stahl Z, Belmaker RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry. 2002 Mar;159(3):477-9. doi: 10.1176/appi.ajp.159.3.477. PMID: 11870016.
  169. Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011 Dec;72(12):1577-84. doi: 10.4088/JCP.10m06634. Epub 2011 Sep 6. PMID: 21939614; PMCID: PMC3534764.
  170. Alavi NM, Khademalhoseini S, Vakili Z, Assarian F. Effect of vitamin D supplementation on depression in elderly patients: A randomized clinical trial. Clin Nutr. 2019 Oct;38(5):2065-2070. doi: 10.1016/j.clnu.2018.09.011. Epub 2018 Sep 19. PMID: 30316534.
  171. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005 Jan;29(1):21-30. doi: 10.1016/j.jchemneu.2004.08.006. PMID: 15589699.
  172. Geng C, Shaikh AS, Han W, Chen D, Guo Y, Jiang P. Vitamin D and depression: mechanisms, determination and application. Asia Pac J Clin Nutr. 2019;28(4):689-694. doi: 10.6133/apjcn.201912_28(4).0003. PMID: 31826364.
  173. Kamalzadeh L, Saghafi M, Mortazavi SS, Jolfaei AG. Vitamin D deficiency and depression in obese adults: a comparative observational study. BMC Psychiatry. 2021 Nov 30;21(1):599. doi: 10.1186/s12888-021-03586-4. PMID: 34847921; PMCID: PMC8638554.
  174. Kerr DC, Zava DT, Piper WT, Saturn SR, Frei B, Gombart AF. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res. 2015 May 30;227(1):46-51. doi: 10.1016/j.psychres.2015.02.016. Epub 2015 Mar 5. PMID: 25791903; PMCID: PMC4420707.
  175. Shaffer JA, Edmondson D, Wasson LT, Falzon L, Homma K, Ezeokoli N, Li P, Davidson KW. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom Med. 2014 Apr;76(3):190-6. doi: 10.1097/PSY.0000000000000044. PMID: 24632894; PMCID: PMC4008710.
  176. Derom ML, Sayón-Orea C, Martínez-Ortega JM, Martínez-González MA. Magnesium and depression: a systematic review. Nutr Neurosci. 2013 Sep;16(5):191-206. doi: 10.1179/1476830512Y.0000000044. Epub 2012 Dec 6. PMID: 23321048.
  177. Sun C, Wang R, Li Z, Zhang D. Dietary magnesium intake and risk of depression. J Affect Disord. 2019 Mar 1;246:627-632. doi: 10.1016/j.jad.2018.12.114. Epub 2018 Dec 27. PMID: 30611059.
  178. Tarleton EK, Littenberg B, MacLean CD, Kennedy AG, Daley C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS One. 2017 Jun 27;12(6):e0180067. doi: 10.1371/journal.pone.0180067. PMID: 28654669; PMCID: PMC5487054.
  179. Phelan D, Molero P, Martínez-González MA, Molendijk M. Magnesium and mood disorders: systematic review and meta-analysis. BJPsych Open. 2018 Jul;4(4):167-179. doi: 10.1192/bjo.2018.22. PMID: 29897029; PMCID: PMC6034436.
  180. Jacka FN, Overland S, Stewart R, Tell GS, Bjelland I, Mykletun A. Association between magnesium intake and depression and anxiety in community-dwelling adults: the Hordaland Health Study. Aust N Z J Psychiatry. 2009 Jan;43(1):45-52. doi: 10.1080/00048670802534408. PMID: 19085527.
  181. Poleszak E, Szewczyk B, Kedzierska E, Wlaź P, Pilc A, Nowak G. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav. 2004 May;78(1):7-12. doi: 10.1016/j.pbb.2004.01.006. PMID: 15159129.
  182. Cardoso CC, Lobato KR, Binfaré RW, Ferreira PK, Rosa AO, Santos AR, Rodrigues AL. Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Mar 17;33(2):235-42. doi: 10.1016/j.pnpbp.2008.11.007. Epub 2008 Nov 27. PMID: 19059299.
  183. Barragan-Rodríguez L, Rodríguez-Morán M, Guerrero-Romero F. Depressive symptoms and hypomagnesemia in older diabetic subjects. Arch Med Res. 2007 Oct;38(7):752-6. doi: 10.1016/j.arcmed.2007.03.008. Epub 2007 May 16. PMID: 17845894.
  184. Kris-Etherton PM, Petersen KS, Hibbeln JR, Hurley D, Kolick V, Peoples S, Rodriguez N, Woodward-Lopez G. Nutrition and behavioral health disorders: depression and anxiety. Nutr Rev. 2021 Feb 11;79(3):247-260. doi: 10.1093/nutrit/nuaa025. PMID: 32447382; PMCID: PMC8453603.
  185. Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev. 2009 Dec 11;62(1):33-44. doi: 10.1016/j.brainresrev.2009.09.003. Epub 2009 Sep 10. PMID: 19747942.
  186. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 2000 May;130(5S Suppl):1471S-83S. doi: 10.1093/jn/130.5.1471S. PMID: 10801962.
  187. Lai J, Moxey A, Nowak G, Vashum K, Bailey K, McEvoy M. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord. 2012 Jan;136(1-2):e31-e39. doi: 10.1016/j.jad.2011.06.022. Epub 2011 Jul 27. PMID: 21798601.
  188. Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem. 2006; 54: 6343–6351.
  189. Bayes J, Schloss J, Sibbritt D. Effects of Polyphenols in a Mediterranean Diet on Symptoms of Depression: A Systematic Literature Review. Adv Nutr. 2020 May 1;11(3):602-615. doi: 10.1093/advances/nmz117. PMID: 31687743; PMCID: PMC7231605.
  190. Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013 Jul;22(7):863-80. doi: 10.1517/13543784.2013.794783. Epub 2013 May 6. PMID: 23642183.
  191. Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern Med. 2013 May 30;13:120. doi: 10.1186/1472-6882-13-120. PMID: 23721571; PMCID: PMC3680177.
  192. Chang SC, Cassidy A, Willett WC, Rimm EB, O'Reilly EJ, Okereke OI. Dietary flavonoid intake and risk of incident depression in midlife and older women. Am J Clin Nutr. 2016 Sep;104(3):704-14. doi: 10.3945/ajcn.115.124545. Epub 2016 Jul 13. PMID: 27413131; PMCID: PMC4997290.
  193. Zhang Q, Yang H, Wang J, Li A, Zhang W, Cui X, Wang K. Effect of green tea on reward learning in healthy individuals: a randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013 Jun 18;12:84. doi: 10.1186/1475-2891-12-84. PMID: 23777561; PMCID: PMC3702504.
  194. Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, Goel A, Tripathi CB. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res. 2014 Apr;28(4):579-85. doi: 10.1002/ptr.5025. Epub 2013 Jul 6. PMID: 23832433.
  195. Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology. 2010 May;58(6):911-20. doi: 10.1016/j.neuropharm.2009.11.002. Epub 2009 Nov 14. PMID: 19917299; PMCID: PMC2838959.
  196. Cook MJ, Karoly PJ, Freestone DR, Himes D, Leyde K, Berkovic S, O'Brien T, Grayden DB, Boston R. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia. 2016 Mar;57(3):359-68. doi: 10.1111/epi.13291. Epub 2015 Dec 31. PMID: 26717880.
  197. Cuciureanu ID, Hînganu D, Stătescu C, Sava A, Hînganu MV, Turliuc MD, Cuciureanu T, Sascău RA. Morpho-functional and radiological approach of poststroke seizures. Rom J Morphol Embryol. 2020 Apr-Jun;61(2):529-534. doi: 10.47162/RJME.61.2.23. PMID: 33544805; PMCID: PMC7864318.
  198. Martorell A, Wellmann M, Guiffa F, Fuenzalida M, Bonansco C. P2Y1 receptor inhibition rescues impaired synaptic plasticity and astroglial Ca2+-dependent activity in the epileptic hippocampus. Neurobiol Dis. 2020 Dec;146:105132. doi: 10.1016/j.nbd.2020.105132. Epub 2020 Oct 10. PMID: 33049315.
  199. Tak AZA, Şengül Y, Ekmekçi B, Karadağ AS. Comparison of optic coherence tomography results in patients with diagnosed epilepsy: Findings in favor of neurodegeneration. Epilepsy Behav. 2019 Mar;92:140-144. doi: 10.1016/j.yebeh.2018.12.021. Epub 2019 Jan 15. PMID: 30658322.
  200. Taddei E, Rosiles A, Hernandez L, Luna R, Rubio C. Apoptosis in the Dentate Nucleus Following Kindling-induced Seizures in Rats. CNS Neurol Disord Drug Targets. 2022;21(6):511-519. doi: 10.2174/1871527320666211201161800. PMID: 34852754.
  201. Waloschková E, Gonzalez-Ramos A, Mikroulis A, Kudláček J, Andersson M, Ledri M, Kokaia M. Human Stem Cell-Derived GABAergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures. Int J Mol Sci. 2021 Dec 8;22(24):13243. doi: 10.3390/ijms222413243. PMID: 34948040; PMCID: PMC8705828.
  202. Carrizosa Moog J, Kakooza–Mwesige A, Tan CT. Epilepsy in the tropics Emerging etiologies. Seizure. 2017; 44: 108–112.
  203. Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, Vyas M, Khatik GL, Chellappan DK, Dua K, Khurana N. Potential anti-epileptic phytoconstituents: An updated review. J Ethnopharmacol. 2021 Mar 25;268:113565. doi: 10.1016/j.jep.2020.113565. Epub 2020 Nov 7. PMID: 33166627.
  204. Singh G, Sander JW. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav. 2020 Apr;105:106949. doi: 10.1016/j.yebeh.2020.106949. Epub 2020 Feb 20. PMID: 32088583.
  205. Vergonjeanne M, Auditeau E, Erazo D, Luna J, Gelle T, Gbessemehlan A, Boumediene F, Preux PM; QUINET Collaboration. Epidemiology of Epilepsy in Low- and Middle-Income Countries: Experience of a Standardized Questionnaire over the Past Two Decades. Neuroepidemiology. 2021;55(5):369-380. doi: 10.1159/000517065. Epub 2021 Jul 27. PMID: 34315167.
  206. Thurman DJ, Begley CE, Carpio A, Helmers S, Hesdorffer DC, Mu J, Touré K, Parko KL, Newton CR. The primary prevention of epilepsy: A report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia. 2018 May;59(5):905-914. doi: 10.1111/epi.14068. Epub 2018 Apr 10. PMID: 29637551; PMCID: PMC7004820.
  207. Kissani N, Lengané YTM, Patterson V, Mesraoua B, Dawn E, Ozkara C, Shears G, Riphagen H, Asadi-Pooya AA, Bogacz A, Aarrouni IE, Nair PP. Telemedicine in epilepsy: How can we improve care, teaching, and awareness? Epilepsy Behav. 2020 Feb;103(Pt A):106854. doi: 10.1016/j.yebeh.2019.106854. Epub 2020 Jan 6. PMID: 31917142.
  208. Radhakrishnan K. Challenges in the management of epilepsy in resource-poor countries. Nat Rev Neurol. 2009 Jun;5(6):323-30. doi: 10.1038/nrneurol.2009.53. Epub 2009 May 19. PMID: 19455183.
  209. Verrotti A, Iapadre G, Di Francesco L, Zagaroli L, Farello G. Diet in the Treatment of Epilepsy: What We Know So Far. Nutrients. 2020 Aug 30;12(9):2645. doi: 10.3390/nu12092645. PMID: 32872661; PMCID: PMC7551815.
  210. GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Apr;18(4):357-375. doi: 10.1016/S1474-4422(18)30454-X. Epub 2019 Feb 14. Erratum in: Lancet Neurol. 2019 May;18(5):e4. PMID: 30773428; PMCID: PMC6416168.
  211. Schoeler NE, Cross JH. Ketogenic dietary therapies in adults with epilepsy: a practical guide. Pract Neurol. 2016 Jun;16(3):208-14. doi: 10.1136/practneurol-2015-001288. Epub 2016 Feb 23. PMID: 26908897.
  212. Dreischmeier E, Zuloaga A, Kotloski RJ, Karasov AO, Gidal BE. Levetiracetam-associated irritability and potential role of vitamin B6 use in veterans with epilepsy. Epilepsy Behav Rep. 2021 May 3;16:100452. doi: 10.1016/j.ebr.2021.100452. PMID: 34142077; PMCID: PMC8188361.
  213. Kim JE, Cho KO. Functional Nutrients for Epilepsy. Nutrients. 2019 Jun 10;11(6):1309. doi: 10.3390/nu11061309. PMID: 31185666; PMCID: PMC6628163.
  214. Ahmed S, DeBerardinis RJ, Ni M, Afroze B. Vitamin B6-dependent epilepsy due to pyridoxal phosphate-binding protein (PLPBP) defect - First case report from Pakistan and review of literature. Ann Med Surg (Lond). 2020 Dec 1;60:721-727. doi: 10.1016/j.amsu.2020.11.079. PMID: 33425341; PMCID: PMC7779953.
  215. Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B6 metabolism. J Inherit Metab Dis. 2019 Jul;42(4):629-646. doi: 10.1002/jimd.12060. Epub 2019 Mar 20. PMID: 30671974.
  216. Mastrangelo M, Cesario S. Update on the treatment of vitamin B6 dependent epilepsies. Expert Rev Neurother. 2019 Nov;19(11):1135-1147. doi: 10.1080/14737175.2019.1648212. Epub 2019 Jul 29. PMID: 31340680.
  217. Chen PY, Tsai YW, Chang AY, Chang HH, Hsiao YH, Huang CW, Sung PS, Chen BH, Fu TF. Increased leptin-b expression and metalloprotease expression contributed to the pyridoxine-associated toxicity in zebrafish larvae displaying seizure-like behavior. Biochem Pharmacol. 2020 Dec;182:114294. doi: 10.1016/j.bcp.2020.114294. Epub 2020 Oct 17. PMID: 33080184.
  218. Lee DG, Lee Y, Shin H, Kang K, Park JM, Kim BK, Kwon O, Lee JJ. Seizures Related to Vitamin B6 Deficiency in Adults. J Epilepsy Res. 2015 Jun 30;5(1):23-4. doi: 10.14581/jer.15006. PMID: 26157671; PMCID: PMC4494992.
  219. Alhaidari HM, Babtain F, Alqadi K, Bouges A, Baeesa S, Al-Said YA. Association between serum vitamin D levels and age in patients with epilepsy: a retrospective study from an epilepsy center in Saudi Arabia. Ann Saudi Med. 2022 Jul-Aug;42(4):262-268. doi: 10.5144/0256-4947.2022.262. Epub 2022 Aug 4. PMID: 35933609; PMCID: PMC9357294.
  220. Chaudhuri JR, Mridula KR, Rathnakishore C, Balaraju B, Bandaru VS. Association of 25-Hydroxyvitamin D Deficiency in Pediatric Epileptic Patients. Iran J Child Neurol. 2017 Spring;11(2):48-56. PMID: 28698728; PMCID: PMC5493830.
  221. Dobson R, Cock HR, Brex P, Giovannoni G. Vitamin D supplementation. Pract Neurol. 2018 Feb;18(1):35-42. doi: 10.1136/practneurol-2017-001720. Epub 2017 Sep 25. PMID: 28947637.
  222. Dong N, Guo HL, Hu YH, Yang J, Xu M, Ding L, Qiu JC, Jiang ZZ, Chen F, Lu XP, Li XN. Association between serum vitamin D status and the anti-seizure treatment in Chinese children with epilepsy. Front Nutr. 2022 Aug 29;9:968868. doi: 10.3389/fnut.2022.968868. PMID: 36105574; PMCID: PMC9464910.
  223. Holló A, Clemens Z, Kamondi A, Lakatos P, Szűcs A. Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav. 2012 May;24(1):131-3. doi: 10.1016/j.yebeh.2012.03.011. Epub 2012 Apr 11. PMID: 22503468.
  224. Abdel-Wahab AF, Afify MA, Mahfouz AM, Shahzad N, Bamagous GA, Al Ghamdi SS. Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res. 2017 Oct 15;1673:78-85. doi: 10.1016/j.brainres.2017.08.011. Epub 2017 Aug 15. PMID: 28818511.
  225. Zakharova IO, Sokolova TV, Vlasova YA, Bayunova LV, Rychkova MP, Avrova NF. α-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress. Int J Mol Sci. 2017 Jan 21;18(1):216. doi: 10.3390/ijms18010216. PMID: 28117722; PMCID: PMC5297845.
  226. Simeone KA, Matthews SA, Samson KK, Simeone TA. Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures. Exp Neurol. 2014 Jan;251:84-90. doi: 10.1016/j.expneurol.2013.11.005. Epub 2013 Nov 21. PMID: 24270080; PMCID: PMC3990438.
  227. Mehvari J, Motlagh FG, Najafi M, Ghazvini MR, Naeini AA, Zare M. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv Biomed Res. 2016 Mar 16;5:36. doi: 10.4103/2277-9175.178780. PMID: 27099849; PMCID: PMC4815530.
  228. Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother. 2021 Nov;143:112146. doi: 10.1016/j.biopha.2021.112146. Epub 2021 Sep 8. PMID: 34507113.
  229. Das A, Sarwar MS, Hossain MS, Karmakar P, Islam MS, Hussain ME, Banik S. Elevated Serum Lipid Peroxidation and Reduced Vitamin C and Trace Element Concentrations Are Correlated With Epilepsy. Clin EEG Neurosci. 2019 Jan;50(1):63-72. doi: 10.1177/1550059418772755. Epub 2018 May 22. PMID: 29788779.
  230. González-Ramírez M, Razo-Juárez LI, Sauer-Ramírez JL, González-Trujano ME, Salgado-Ceballos H, Orozco-Suarez S. Anticonvulsive effect of vitamin C on pentylenetetrazol-induced seizures in immature rats. Pharmacol Biochem Behav. 2010 Dec;97(2):267-72. doi: 10.1016/j.pbb.2010.08.009. Epub 2010 Aug 27. PMID: 20801149.
  231. Santos IM, Tomé Ada R, Saldanha GB, Ferreira PM, Militão GC, Freitas RM. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxid Med Cell Longev. 2009 Sep-Oct;2(4):214-21. doi: 10.4161/oxim.2.4.8876. PMID: 20716907; PMCID: PMC2763259.
  232. Nejm MB, Haidar AA, Marques MJ, Hirata AE, Nogueira FN, Cavalheiro EA, Scorza FA, Cysneiros RM. Fish oil provides protection against the oxidative stress in pilocarpine model of epilepsy. Metab Brain Dis. 2015 Aug;30(4):903-9. doi: 10.1007/s11011-015-9666-0. Epub 2015 Apr 19. PMID: 25893881.
  233. Tejada S, Martorell M, Capó X, Tur JA, Pons A, Sureda A. Omega-3 Fatty Acids in the Management of Epilepsy. Curr Top Med Chem. 2016;16(17):1897-905. doi: 10.2174/1568026616666160204123107. PMID: 26845549.
  234. Taha AY, Trepanier MO, Ciobanu FA, Taha NM, Ahmed M, Zeng Q, Cheuk WI, Ip B, Filo E, Scott BW, Burnham WM, Bazinet RP. A minimum of 3 months of dietary fish oil supplementation is required to raise amygdaloid afterdischarge seizure thresholds in rats--implications for treating complex partial seizures. Epilepsy Behav. 2013 Apr;27(1):49-58. doi: 10.1016/j.yebeh.2012.12.004. Epub 2013 Jan 31. PMID: 23376336.
  235. DeGiorgio CM, Miller PR, Harper R, Gornbein J, Schrader L, Soss J, Meymandi S. Fish oil (n-3 fatty acids) in drug resistant epilepsy: a randomised placebo-controlled crossover study. J Neurol Neurosurg Psychiatry. 2015 Jan;86(1):65-70. doi: 10.1136/jnnp-2014-307749. Epub 2014 Sep 8. PMID: 25201887.
  236. Omrani S, Taheri M, Omrani MD, Arsang-Jang S, Ghafouri-Fard S. The effect of omega-3 fatty acids on clinical and paraclinical features of intractable epileptic patients: a triple blind randomized clinical trial. Clin Transl Med. 2019 Jan 16;8(1):3. doi: 10.1186/s40169-019-0220-2. PMID: 30649643; PMCID: PMC6335228.
  237. Reda DM, Abd-El-Fatah NK, Omar Tel-S, Darwish OA. Fish Oil Intake and Seizure Control in Children with Medically Resistant Epilepsy. N Am J Med Sci. 2015 Jul;7(7):317-21. doi: 10.4103/1947-2714.161248. PMID: 26258079; PMCID: PMC4525390.
  238. Yuen AW, Flugel D, Poepel A, Bell GS, Peacock JL, Sander JW. Non-randomized open trial of eicosapentaenoic acid (EPA), an omega-3 fatty acid, in ten people with chronic epilepsy. Epilepsy Behav. 2012 Mar;23(3):370-2. doi: 10.1016/j.yebeh.2011.11.030. Epub 2012 Feb 17. PMID: 22342198.
  239. Scorza FA, Cysneiros RM, Arida RM, Terra VC, Machado HR, Rabello GM, Albuquerque M, Cavalheiro EA. Fish consumption, contaminants and sudden unexpected death in epilepsy: many more benefits than risks. Braz J Biol. 2010 Aug;70(3):665-70. doi: 10.1590/s1519-69842010000300026. PMID: 20730355.
  240. Abdullahi I, Watila MM, Shahi N, Nyandaiti YW, Bwala SA. Serum magnesium in adult patients with idiopathic and symptomatic epilepsy in Maiduguri, Northeast Nigeria. Niger J Clin Pract. 2019 Feb;22(2):186-193. doi: 10.4103/njcp.njcp_252_18. PMID: 30729941.
  241. Osborn KE, Shytle RD, Frontera AT, Soble JR, Schoenberg MR. Addressing potential role of magnesium dyshomeostasis to improve treatment efficacy for epilepsy: A reexamination of the literature. J Clin Pharmacol. 2016 Mar;56(3):260-5. doi: 10.1002/jcph.626. Epub 2015 Oct 26. PMID: 26313363.
  242. Yuen AW, Sander JW. Can magnesium supplementation reduce seizures in people with epilepsy? A hypothesis. Epilepsy Res. 2012 Jun;100(1-2):152-6. doi: 10.1016/j.eplepsyres.2012.02.004. Epub 2012 Mar 8. PMID: 22406257.
  243. Yary T, Kauhanen J. Dietary intake of magnesium and the risk of epilepsy in middle-aged and older Finnish men: A 22-year follow-up study in a general population. Nutrition. 2019 Feb;58:36-39. doi: 10.1016/j.nut.2018.06.019. Epub 2018 Jul 12. PMID: 30273823.
  244. Diniz TC, Silva JC, de Lima-Saraiva SR, Ribeiro FP, Pacheco AG, de Freitas RM, Quintans-Júnior LJ, Quintans Jde S, Mendes RL, Almeida JR. The role of flavonoids on oxidative stress in epilepsy. Oxid Med Cell Longev. 2015;2015:171756. doi: 10.1155/2015/171756. Epub 2015 Jan 11. PMID: 25653736; PMCID: PMC4306219.
  245. Szala-Rycaj J, Zagaja M, Szewczyk A, Andres-Mach M. Selected flavonoids and their role in the treatment of epilepsy - a review of the latest reports from experimental studies. Acta Neurobiol Exp (Wars). 2021;81(2):151-160. PMID: 34170262.
  246. Yang N, Guan QW, Chen FH, Xia QX, Yin XX, Zhou HH, Mao XY. Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. Oxid Med Cell Longev. 2020 Nov 25;2020:6687185. doi: 10.1155/2020/6687185. PMID: 33299529; PMCID: PMC7710440.
  247. Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res. 2009 Aug;34(8):1393-400. doi: 10.1007/s11064-009-9920-0. Epub 2009 Feb 14. PMID: 19219549.
  248. Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation. Sci Rep. 2015 Dec 7;5:17807. doi: 10.1038/srep17807. PMID: 26639668; PMCID: PMC4671086.
  249. Xie T, Wang WP, Mao ZF, Qu ZZ, Luan SQ, Jia LJ, Kan MC. Effects of epigallocatechin-3-gallate on pentylenetetrazole-induced kindling, cognitive impairment and oxidative stress in rats. Neurosci Lett. 2012 May 16;516(2):237-41. doi: 10.1016/j.neulet.2012.04.001. Epub 2012 Apr 9. PMID: 22521706.
  250. Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int. 2015 Oct;89:40-50. doi: 10.1016/j.neuint.2015.07.009. Epub 2015 Jul 16. PMID: 26190183.
  251. Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, van Vliet EA, Gorter JA. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 2016 May;57(5):688-97. doi: 10.1111/epi.13345. Epub 2016 Feb 29. PMID: 26924447.
  252. Bertoncello KT, Aguiar GPS, Oliveira JV, Siebel AM. Micronization potentiates curcumin's anti-seizure effect and brings an important advance in epilepsy treatment. Sci Rep. 2018 Feb 8;8(1):2645. doi: 10.1038/s41598-018-20897-x. PMID: 29422541; PMCID: PMC5805781.
  253. Brzostek K, Ukleja A. Rola diety w stwardnieniu rozsianym [The role of diet in multiple sclerosis]. Pol Merkur Lekarski. 2017 Jan 23;42(247):46-50. Polish. PMID: 28134233.
  254. Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol. 2020 Dec 17;11:587078. doi: 10.3389/fimmu.2020.587078. PMID: 33391262; PMCID: PMC7773893.
  255. Feige J, Moser T, Bieler L, Schwenker K, Hauer L, Sellner J. Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats. Nutrients. 2020 Mar 16;12(3):783. doi: 10.3390/nu12030783. PMID: 32188044; PMCID: PMC7146466.
  256. Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol. 2020 Sep 24;11:549842. doi: 10.3389/fimmu.2020.549842. PMID: 33072089; PMCID: PMC7541830.
  257. Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol. 2019 Nov;41(6):711-726. doi: 10.1007/s00281-019-00765-0. Epub 2019 Nov 15. PMID: 31732775; PMCID: PMC6881249.
  258. Díaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: An update. Mult Scler Relat Disord. 2019 May;30:215-224. doi: 10.1016/j.msard.2019.01.039. Epub 2019 Jan 24. PMID: 30822617.
  259. Esposito S, Bonavita S, Sparaco M, Gallo A, Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr Neurosci. 2018 Jul;21(6):377-390. doi: 10.1080/1028415X.2017.1303016. Epub 2017 Mar 24. PMID: 28338444.
  260. Rodríguez Murúa S, Farez MF, Quintana FJ. The Immune Response in Multiple Sclerosis. Annu Rev Pathol. 2022 Jan 24;17:121-139. doi: 10.1146/annurev-pathol-052920-040318. Epub 2021 Oct 4. PMID: 34606377.
  261. Koch-Henriksen N, Magyari M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat Rev Neurol. 2021 Nov;17(11):676-688. doi: 10.1038/s41582-021-00556-y. Epub 2021 Sep 28. PMID: 34584250.
  262. Habek M, Hojsak I, Brinar VV. Nutrition in multiple sclerosis. Clin Neurol Neurosurg. 2010 Sep;112(7):616-20. doi: 10.1016/j.clineuro.2010.03.029. Epub 2010 May 4. PMID: 20444538.
  263. Simpson S Jr, der Mei IV, Taylor B. The Role of Vitamin D in Multiple Sclerosis: Biology and Biochemistry, Epidemiology and Potential Roles in Treatment. Med Chem. 2018 Feb 6;14(2):129-143. doi: 10.2174/1573406413666170921143600. PMID: 28933265.
  264. Dhanapalaratnam R, Markoulli M, Krishnan AV. Disorders of vision in multiple sclerosis. Clin Exp Optom. 2022 Jan;105(1):3-12. doi: 10.1080/08164622.2021.1947745. Epub 2021 Aug 4. PMID: 34348598.
  265. Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs. 2014 Apr;28(4):291-9. doi: 10.1007/s40263-014-0148-4. PMID: 24557746.
  266. Khosravi-Largani M, Pourvali-Talatappeh P, Rousta AM, Karimi-Kivi M, Noroozi E, Mahjoob A, Asaadi Y, Shahmohammadi A, Sadeghi S, Shakeri S, Ghiyasvand K, Tavakoli-Yaraki M. A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci. 2018 Jan 28;10:37-44. doi: 10.1016/j.ensci.2018.01.007. PMID: 29736427; PMCID: PMC5934114.
  267. Reza Dorosty-Motlagh A, Mohammadzadeh Honarvar N, Sedighiyan M, Abdolahi M. The Molecular Mechanisms of Vitamin A Deficiency in Multiple Sclerosis. J Mol Neurosci. 2016 Sep;60(1):82-90. doi: 10.1007/s12031-016-0781-0. Epub 2016 Jun 29. PMID: 27356515.
  268. Bitarafan S, Saboor-Yaraghi A, Sahraian MA, Nafissi S, Togha M, Beladi Moghadam N, Roostaei T, Siassi F, Eshraghian MR, Ghanaati H, Jafarirad S, Rafiei B, Harirchian MH. Impact of Vitamin A Supplementation on Disease Progression in Patients with Multiple Sclerosis. Arch Iran Med. 2015 Jul;18(7):435-40. PMID: 26161708.
  269. Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients. 2019 Jul 5;11(7):1528. doi: 10.3390/nu11071528. PMID: 31284389; PMCID: PMC6682972.
  270. Bitarafan S, Saboor-Yaraghi A, Sahraian MA, Soltani D, Nafissi S, Togha M, Beladi Moghadam N, Roostaei T, Mohammadzadeh Honarvar N, Harirchian MH. Effect of Vitamin A Supplementation on fatigue and depression in Multiple Sclerosis patients: A Double-Blind Placebo-Controlled Clinical Trial. Iran J Allergy Asthma Immunol. 2016 Feb;15(1):13-9. PMID: 26996107.
  271. Riccio P, Rossano R. Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. Neurotherapeutics. 2018 Jan;15(1):75-91. doi: 10.1007/s13311-017-0581-4. PMID: 29067566; PMCID: PMC5794694.
  272. Madireddy S, Madireddy S. The role of diet in maintaining strong brain health by taking the advantage of the gut-brain axis. J Food Nutr Res. 2019; 7: 41-50.
  273. Løken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, Hovdal H, Lilleås F, Midgard R, Pedersen T, Benth JS, Torkildsen Ø, Wergeland S, Holmøy T. Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis. Mult Scler. 2013 Apr;19(4):451-7. doi: 10.1177/1352458512457843. Epub 2012 Aug 20. PMID: 22907941.
  274. Mizee MR, Nijland PG, van der Pol SM, Drexhage JA, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries HE. Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 2014 Nov;128(5):691-703. doi: 10.1007/s00401-014-1335-6. Epub 2014 Aug 23. PMID: 25149081.
  275. Salzer J, Hallmans G, Nyström M, Stenlund H, Wadell G, Sundström P. Vitamin A and systemic inflammation as protective factors in multiple sclerosis. Mult Scler. 2013 Jul;19(8):1046-51. doi: 10.1177/1352458512472752. Epub 2013 Jan 18. PMID: 23334316.
  276. Kocer B, Engur S, Ak F, Yilmaz M. Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neurosci. 2009 Mar;16(3):399-403. doi: 10.1016/j.jocn.2008.05.015. Epub 2009 Jan 18. PMID: 19153046.
  277. Bagur MJ, Murcia MA, Jiménez-Monreal AM, Tur JA, Bibiloni MM, Alonso GL, Martínez-Tomé M. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv Nutr. 2017 May 15;8(3):463-472. doi: 10.3945/an.116.014191. PMID: 28507011; PMCID: PMC5421121.
  278. Nemazannikova N, Mikkelsen K, Stojanovska L, Blatch GL, Apostolopoulos V. Is there a Link between Vitamin B and Multiple Sclerosis? Med Chem. 2018 Feb 6;14(2):170-180. doi: 10.2174/1573406413666170906123857. PMID: 28875857.
  279. Moghaddasi M, Mamarabadi M, Mohebi N, Razjouyan H, Aghaei M. Homocysteine, vitamin B12 and folate levels in Iranian patients with Multiple Sclerosis: a case control study. Clin Neurol Neurosurg. 2013 Sep;115(9):1802-5. doi: 10.1016/j.clineuro.2013.05.007. Epub 2013 Jun 10. PMID: 23756083.
  280. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006 Nov;5(11):949-60. doi: 10.1016/S1474-4422(06)70598-1. PMID: 17052662.
  281. Saka M, Saka M, Koseler E, Metin S, Bilen S, Aslanyavrusu M, Ak F, Kiziltan G. Nutritional status and anthropometric measurements of patients with multiple sclerosis. Saudi Med J. 2012 Feb;33(2):160-6. PMID: 22327756.
  282. Dardiotis E, Arseniou S, Sokratous M, Tsouris Z, Siokas V, Mentis AA, Michalopoulou A, Andravizou A, Dastamani M, Paterakis K, Bogdanos D, Brotis A. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult Scler Relat Disord. 2017 Oct;17:190-197. doi: 10.1016/j.msard.2017.08.004. Epub 2017 Aug 16. PMID: 29055456.
  283. Weinstein SJ, Hartman TJ, Stolzenberg-Solomon R, Pietinen P, Barrett MJ, Taylor PR, Virtamo J, Albanes D. Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine. Cancer Epidemiol Biomarkers Prev. 2003 Nov;12(11 Pt 1):1271-2. PMID: 14652294.
  284. Lemprière S. Vitamin B3 promotes remyelination. Nat Rev Neurol. 2020 Apr;16(4):184-185. doi: 10.1038/s41582-020-0331-9. PMID: 32094486.
  285. Costantini A, Nappo A, Pala MI, Zappone A. High dose thiamine improves fatigue in multiple sclerosis. BMJ Case Rep. 2013 Jul 16;2013:bcr2013009144. doi: 10.1136/bcr-2013-009144. PMID: 23861280; PMCID: PMC3736110.
  286. Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U. Vitamin D and remyelination in multiple sclerosis. Neurologia (Engl Ed). 2018 Apr;33(3):177-186. English, Spanish. doi: 10.1016/j.nrl.2016.05.001. Epub 2016 Jun 16. PMID: 27321170.
  287. McLaughlin L, Clarke L, Khalilidehkordi E, Butzkueven H, Taylor B, Broadley SA. Vitamin D for the treatment of multiple sclerosis: a meta-analysis. J Neurol. 2018 Dec;265(12):2893-2905. doi: 10.1007/s00415-018-9074-6. Epub 2018 Oct 3. PMID: 30284038.
  288. Miclea A, Bagnoud M, Chan A, Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front Immunol. 2020 May 6;11:781. doi: 10.3389/fimmu.2020.00781. PMID: 32435244; PMCID: PMC7218089.
  289. Wasnik S, Sharma I, Baylink DJ, Tang X. Vitamin D as a Potential Therapy for Multiple Sclerosis: Where Are We? Int J Mol Sci. 2020 Apr 28;21(9):3102. doi: 10.3390/ijms21093102. PMID: 32354174; PMCID: PMC7247155.
  290. VanAmerongen BM, Dijkstra CD, Lips P, Polman CH. Multiple sclerosis and vitamin D: an update. Eur J Clin Nutr. 2004 Aug;58(8):1095-109. doi: 10.1038/sj.ejcn.1601952. PMID: 15054436.
  291. Ascherio A, Munger KL. Not too late to take vitamin D supplements. Ann Neurol. 2014 Sep;76(3):321-2. doi: 10.1002/ana.24239. Epub 2014 Aug 30. PMID: 25131341.
  292. Mazdeh M, Seifirad S, Kazemi N, Seifrabie MA, Dehghan A, Abbasi H. Comparison of vitamin D3 serum levels in new diagnosed patients with multiple sclerosis versus their healthy relatives. Acta Med Iran. 2013 May 30;51(5):289-92. PMID: 23737310.
  293. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006 Dec 20;296(23):2832-8. doi: 10.1001/jama.296.23.2832. PMID: 17179460.
  294. Yeh WZ, Gresle M, Jokubaitis V, Stankovich J, van der Walt A, Butzkueven H. Immunoregulatory effects and therapeutic potential of vitamin D in multiple sclerosis. Br J Pharmacol. 2020 Sep;177(18):4113-4133. doi: 10.1111/bph.15201. Epub 2020 Aug 5. PMID: 32668009; PMCID: PMC7443468.
  295. Boltjes R, Knippenberg S, Gerlach O, Hupperts R, Damoiseaux J. Vitamin D supplementation in multiple sclerosis: an expert opinion based on the review of current evidence. Expert Rev Neurother. 2021 Jun;21(6):715-725. doi: 10.1080/14737175.2021.1935878. Epub 2021 Jun 4. PMID: 34058936.
  296. Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult Scler. 2005 Feb;11(1):24-32. doi: 10.1191/1352458505ms1119oa. PMID: 15732263.
  297. Bjørnevik K, Chitnis T, Ascherio A, Munger KL. Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler. 2017 Dec;23(14):1830-1838. doi: 10.1177/1352458517691150. Epub 2017 Feb 3. PMID: 28156186; PMCID: PMC5494026.
  298. Chen S, Zhang H, Pu H, Wang G, Li W, Leak RK, Chen J, Liou AK, Hu X. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep. 2014 Dec 12;4:7458. doi: 10.1038/srep07458. PMID: 25500548; PMCID: PMC4264015.
  299. Hoare S, Lithander F, van der Mei I, Ponsonby AL, Lucas R; Ausimmune Investigator Group. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study. Mult Scler. 2016 Jun;22(7):884-92. doi: 10.1177/1352458515604380. Epub 2015 Sep 11. PMID: 26362904.
  300. van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EA. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr. 2005 Dec;59(12):1347-61. doi: 10.1038/sj.ejcn.1602255. PMID: 16118655.
  301. Mauritz E, Laliena A, Vallejo D, Tuñón MJ, Rodríguez-López JM. Effects of a low-fat diet with antioxidant supplementation on biochemical markers of multiple sclerosis long-term care residents. Nutr Hosp. 2013; 28: 2229-35.
  302. Shinto L, Marracci G, Baldauf-Wagner S, Strehlow A, Yadav V, Stuber L, Bourdette D. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids. 2009 Feb-Mar;80(2-3):131-6. doi: 10.1016/j.plefa.2008.12.001. Epub 2009 Jan 25. PMID: 19171471; PMCID: PMC2692605.
  303. Kampman MT, Wilsgaard T, Mellgren SI. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J Neurol. 2007 Apr;254(4):471-7. doi: 10.1007/s00415-006-0395-5. Epub 2007 Mar 21. PMID: 17377831.
  304. Rezapour-Firouzi S, Arefhosseini SR, Ebrahimi-Mamaghani M, Farhoudi M, Baradaran B, Ali TM, Zamani F. Erythrocyte membrane fatty acids in multiple sclerosis patients and hot-nature dietary intervention with co-supplemented hemp-seed and evening-primrose oils. Afr J Tradit Complement Altern Med. 2013 Oct 3;10(6):519-27. doi: 10.4314/ajtcam.v10i6.22. PMID: 24311880; PMCID: PMC3847395.
  305. Jelinek GA, Hadgkiss EJ, Weiland TJ, Pereira NG, Marck CH, van der Meer DM. Association of fish consumption and Ω 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int J Neurosci. 2013 Nov;123(11):792-800. doi: 10.3109/00207454.2013.803104. Epub 2013 Jun 3. PMID: 23713615; PMCID: PMC3821380.
  306. Weinstock-Guttman B, Baier M, Park Y, Feichter J, Lee-Kwen P, Gallagher E, Venkatraman J, Meksawan K, Deinehert S, Pendergast D, Awad AB, Ramanathan M, Munschauer F, Rudick R. Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids. 2005 Nov;73(5):397-404. doi: 10.1016/j.plefa.2005.05.024. PMID: 16099630.
  307. Pantzaris MC, Loukaides GN, Ntzani EE, Patrikios IS. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: a randomised, double-blind, placebo-controlled proof-of-concept clinical trial. BMJ Open. 2013 Apr 17;3(4):e002170. doi: 10.1136/bmjopen-2012-002170. PMID: 23599375; PMCID: PMC3641495.
  308. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. 2007 Nov;35(Pt 5):1156-60. doi: 10.1042/BST0351156. PMID: 17956300.
  309. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med. 2011 Aug;19(4):228-37. doi: 10.1016/j.ctim.2011.06.006. Epub 2011 Jul 27. PMID: 21827937.
  310. Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev. 2019 Jul;18(7):647-657. doi: 10.1016/j.autrev.2019.05.001. Epub 2019 May 3. PMID: 31059841; PMCID: PMC6588481.
  311. Tandon A, Singh SJ, Chaturvedi RK. Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. Biomed Res Int. 2018 Jul 12;2018:1483791. doi: 10.1155/2018/1483791. PMID: 30112360; PMCID: PMC6077677.
  312. Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 2010 Dec;30(4):328-39. doi: 10.1097/WNO.0b013e3181f7f833. PMID: 21107122; PMCID: PMC3312784.
  313. Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA. Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study. Mol Neurobiol. 2017 Jul;54(5):3219-3229. doi: 10.1007/s12035-016-9891-5. Epub 2016 Apr 11. PMID: 27067589.
  314. Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev. 2013;2013:891748. doi: 10.1155/2013/891748. Epub 2013 Jun 6. PMID: 23840922; PMCID: PMC3690243.
  315. Hendriks JJ, de Vries HE, van der Pol SM, van den Berg TK, van Tol EA, Dijkstra CD. Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. Biochem Pharmacol. 2003 Mar 1;65(5):877-85. doi: 10.1016/s0006-2952(02)01609-x. PMID: 12628496.
  316. Siahpoosh A, Majdinasab N, Derakhshannezhad N, Khalili HR, Malayeri A. Effect of grape seed on quality of life in multiple sclerosis patients. J Contemp Med Sci. 2018; 4:148-152.
  317. Lovera J, Bagert B, Smoot K, Morris CD, Frank R, Bogardus K, Wild K, Oken B, Whitham R, Bourdette D. Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: a randomized, placebo-controlled trial. Mult Scler. 2007 Apr;13(3):376-85. doi: 10.1177/1352458506071213. Epub 2007 Jan 29. PMID: 17439907.
  318. Leong EM, Semple SJ, Angley M, Siebert W, Petkov J, McKinnon RA. Complementary and alternative medicines and dietary interventions in multiple sclerosis: what is being used in South Australia and why? Complement Ther Med. 2009 Aug;17(4):216-23. doi: 10.1016/j.ctim.2009.03.001. Epub 2009 Apr 21. PMID: 19632549.
  319. Yadav V, Shinto L, Morris C, Senders A, Baldauf-Wagner S, Bourdette D. Use and self-reported benefit of complementary and alternative medicine among multiple sclerosis patients. Int J MS Care. 2006; 8(1): 5-10.
  320. Xie L, Li XK, Takahara S. Curcumin has bright prospects for the treatment of multiple sclerosis. Int Immunopharmacol. 2011 Mar;11(3):323-30. doi: 10.1016/j.intimp.2010.08.013. Epub 2010 Sep 8. PMID: 20828641.
  321. Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M. Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model. 2021 Sep;107:107963. doi: 10.1016/j.jmgm.2021.107963. Epub 2021 Jun 11. PMID: 34147836.
  322. Fischer EK, Drago A. A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia. J Neural Transm (Vienna). 2017 Jul;124(7):765-774. doi: 10.1007/s00702-017-1730-y. Epub 2017 May 5. PMID: 28477285.
  323. Lee SC, Liu CC, Kuo CJ, Hsueh IP, Hsieh CL. Sensitivity and specificity of a facial emotion recognition test in classifying patients with schizophrenia. J Affect Disord. 2020 Oct 1;275:224-229. doi: 10.1016/j.jad.2020.07.003. Epub 2020 Jul 9. PMID: 32734912.
  324. Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci. 2020 Oct 16;10(10):742. doi: 10.3390/brainsci10100742. PMID: 33081261; PMCID: PMC7603028.
  325. Zugno AI, Canever L, Heylmann AS, Wessler PG, Steckert A, Mastella GA, de Oliveira MB, Damázio LS, Pacheco FD, Calixto OP, Pereira FP, Macan TP, Pedro TH, Schuck PF, Quevedo J, Budni J. Effect of folic acid on oxidative stress and behavioral changes in the animal model of schizophrenia induced by ketamine. J Psychiatr Res. 2016 Oct;81:23-35. doi: 10.1016/j.jpsychires.2016.06.013. Epub 2016 Jun 16. PMID: 27367209.
  326. Hamazaki K, Maekawa M, Toyota T, Dean B, Hamazaki T, Yoshikawa T. Fatty acid composition of the postmortem corpus callosum of patients with schizophrenia, bipolar disorder, or major depressive disorder. Eur Psychiatry. 2017 Jan;39:51-56. doi: 10.1016/j.eurpsy.2016.05.007. Epub 2016 Nov 5. PMID: 27821355.
  327. van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, Agartz I, Westlye LT, Haukvik UK, Dale AM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin A, Machielsen MW, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller BA, Preda A, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NE, Hulshoff Pol HE, Ophoff RA, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh AM, Lawrie SM, Hashimoto R, Thompson PM, Turner JA. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016 Apr;21(4):547-53. doi: 10.1038/mp.2015.63. Epub 2015 Jun 2. Erratum in: Mol Psychiatry. 2016 Apr;21(4):585. Pol, H E H [Corrected to Hulshoff Pol, H E]. PMID: 26033243; PMCID: PMC4668237.
  328. Gourion D, Gourevitch R, Leprovost JB, Olié H lôo JP, Krebs MO. L'hypothèse neurodéveloppementale dans la schizophrénie [Neurodevelopmental hypothesis in schizophrenia]. Encephale. 2004 Mar-Apr;30(2):109-18. French. doi: 10.1016/s0013-7006(04)95421-8. PMID: 15107713.
  329. Guessoum SB, Le Strat Y, Dubertret C, Mallet J. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Apr 20;99:109862. doi: 10.1016/j.pnpbp.2020.109862. Epub 2020 Jan 10. PMID: 31927053.
  330. Gainsford K, Fitzgibbon B, Fitzgerald PB, Hoy KE. Transforming treatments for schizophrenia: Virtual reality, brain stimulation and social cognition. Psychiatry Res. 2020 Jun;288:112974. doi: 10.1016/j.psychres.2020.112974. Epub 2020 Apr 19. PMID: 32353694.
  331. Khandaker GM, Dantzer R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology (Berl). 2016 May;233(9):1559-73. doi: 10.1007/s00213-015-3975-1. Epub 2015 Jun 4. PMID: 26037944; PMCID: PMC4671307.
  332. Correll CU, Schooler NR. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr Dis Treat. 2020 Feb 21;16:519-534. doi: 10.2147/NDT.S225643. PMID: 32110026; PMCID: PMC7041437.
  333. Lin CH, Lane HY. Early Identification and Intervention of Schizophrenia: Insight From Hypotheses of Glutamate Dysfunction and Oxidative Stress. Front Psychiatry. 2019 Feb 27;10:93. doi: 10.3389/fpsyt.2019.00093. PMID: 30873052; PMCID: PMC6400883.
  334. Pu S, Nakagome K, Itakura M, Iwata M, Nagata I, Kaneko K. The association between cognitive deficits and prefrontal hemodynamic responses during performance of working memory task in patients with schizophrenia. Schizophr Res. 2016 Apr;172(1-3):114-22. doi: 10.1016/j.schres.2016.01.045. Epub 2016 Jan 30. PMID: 26830318.
  335. Wright S, Kochunov P, Chiappelli J, McMahon R, Muellerklein F, Wijtenburg SA, White MG, Rowland LM, Hong LE. Accelerated white matter aging in schizophrenia: role of white matter blood perfusion. Neurobiol Aging. 2014 Oct;35(10):2411-2418. doi: 10.1016/j.neurobiolaging.2014.02.016. Epub 2014 Feb 28. PMID: 24680326; PMCID: PMC4087059.
  336. Do KQ, Conus P, Cuenod M. Redox dysregulation and oxidative stress in schizophrenia: nutrigenetics as a challenge in psychiatric disease prevention. World Rev Nutr Diet. 2010;101:131-153. doi: 10.1159/000314518. Epub 2010 Apr 30. PMID: 20436260.
  337. Stertz L, Magalhães PV, Kapczinski F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry. 2013 Jan;26(1):19-26. doi: 10.1097/YCO.0b013e32835aa4b4. PMID: 23196997.
  338. Jones GH, Vecera CM, Pinjari OF, Machado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci. 2021 Jun 11;28(1):45. doi: 10.1186/s12929-021-00742-6. PMID: 34112182; PMCID: PMC8194019.
  339. Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord. 2014 Dec;169:15-20. doi: 10.1016/j.jad.2014.07.032. Epub 2014 Jul 30. PMID: 25128861.
  340. Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion. 2021 Mar;57:23-36. doi: 10.1016/j.mito.2020.12.002. Epub 2020 Dec 17. PMID: 33340709.
  341. Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004 Dec 17;119(6):873-87. doi: 10.1016/j.cell.2004.11.003. PMID: 15607982.
  342. Benedetti F, Aggio V, Pratesi ML, Greco G, Furlan R. Neuroinflammation in Bipolar Depression. Front Psychiatry. 2020 Feb 26;11:71. doi: 10.3389/fpsyt.2020.00071. PMID: 32174850; PMCID: PMC7054443.
  343. Ghodake SR, Suryakar AN, Padalkar RK. The possible role of oxidants and antioxidant imbalance in pathophysiology of schizophrenia. Int J Med Res Health Sci. 2012; 2: 19-35.
  344. Reddy R, Reddy R. Antioxidant therapeutics for schizophrenia. Antioxid Redox Signal. 2011 Oct 1;15(7):2047-55. doi: 10.1089/ars.2010.3571. Epub 2011 Apr 20. PMID: 20977337.
  345. D'Souza B, D'Souza V. Oxidative injury and antioxidant vitamins E and C in Schizophrenia. Indian J Clin Biochem. 2003 Jan;18(1):87-90. doi: 10.1007/BF02867671. PMID: 23105377; PMCID: PMC3453727.
  346. Dasgupta J, Dasgupta SR, Singh RK. Role of free radicals and antioxidants in schizophernia. Int J. Pharm Chem Biol Sci. 2014; 4: 825-828.
  347. Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl). 2005 Nov;182(4):494-8. doi: 10.1007/s00213-005-0117-1. Epub 2005 Oct 19. PMID: 16133138.
  348. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res. 2003 Aug 1;62(3):195-204. doi: 10.1016/s0920-9964(02)00284-0. PMID: 12837515.
  349. Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016 Sep;176(1):52-71. doi: 10.1016/j.schres.2015.06.022. Epub 2015 Nov 15. PMID: 26589391.
  350. Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutr J. 2014 Sep 16;13:91. doi: 10.1186/1475-2891-13-91. PMID: 25228271; PMCID: PMC4171568.
  351. Soares-Weiser K, Maayan N, McGrath J. Vitamin E for neuroleptic-induced tardive dyskinesia. Cochrane Database Syst Rev. 2011 Feb 16;(2):CD000209. doi: 10.1002/14651858.CD000209.pub2. Update in: Cochrane Database Syst Rev. 2018 Jan 17;1:CD000209. PMID: 21328246.
  352. Cieslak K, Feingold J, Antonius D, Walsh-Messinger J, Dracxler R, Rosedale M, Aujero N, Keefe D, Goetz D, Goetz R, Malaspina D. Low vitamin D levels predict clinical features of schizophrenia. Schizophr Res. 2014 Nov;159(2-3):543-5. doi: 10.1016/j.schres.2014.08.031. Epub 2014 Oct 11. PMID: 25311777; PMCID: PMC4252834.
  353. Lally J, Gaughran F. Vitamin D in schizophrenia and depression A clinical review. BJPsych Adv. 2019; 25: 240-248.
  354. Zhu JL, Luo WW, Cheng X, Li Y, Zhang QZ, Peng WX. Vitamin D deficiency and Schizophrenia in Adults: A Systematic Review and Meta-analysis of Observational Studies. Psychiatry Res. 2020 Jun;288:112959. doi: 10.1016/j.psychres.2020.112959. Epub 2020 Apr 18. PMID: 32335466.
  355. Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Ment Health. 2016 Feb;19(1):6-9. doi: 10.1136/eb-2015-102117. Epub 2016 Jan 14. PMID: 26767392.
  356. Graham KA, Keefe RS, Lieberman JA, Calikoglu AS, Lansing KM, Perkins DO. Relationship of low vitamin D status with positive, negative and cognitive symptom domains in people with first-episode schizophrenia. Early Interv Psychiatry. 2015 Oct;9(5):397-405. doi: 10.1111/eip.12122. Epub 2014 Feb 24. PMID: 24612563.
  357. Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, Bahmani F, Asemi Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry. 2019 Feb 21;19(1):77. doi: 10.1186/s12888-019-2059-x. PMID: 30791895; PMCID: PMC6383260.
  358. Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis. 2020 Jul 3;19(1):159. doi: 10.1186/s12944-020-01337-0. PMID: 32620164; PMCID: PMC7333328.
  359. Satogami K, Takahashi S, Yamada S, Ukai S, Shinosaki K. Omega-3 fatty acids related to cognitive impairment in patients with schizophrenia. Schizophr Res Cogn. 2017 May 18;9:8-12. doi: 10.1016/j.scog.2017.05.001. PMID: 28740828; PMCID: PMC5514384.
  360. Tessier C, Sweers K, Frajerman A, Bergaoui H, Ferreri F, Delva C, Lapidus N, Lamaziere A, Roiser JP, De Hert M, Nuss P. Membrane lipidomics in schizophrenia patients: a correlational study with clinical and cognitive manifestations. Transl Psychiatry. 2016 Oct 4;6(10):e906. doi: 10.1038/tp.2016.142. PMID: 27701405; PMCID: PMC5315538.
  361. Okusaga OO. Accelerated aging in schizophrenia patients: the potential role of oxidative stress. Aging Dis. 2013 Dec 4;5(4):256-62. doi: 10.14336/AD.2014.0500256. PMID: 25110609; PMCID: PMC4113515.
  362. Meital LT, Windsor MT, Perissiou M, Schulze K, Magee R, Kuballa A, Golledge J, Bailey TG, Askew CD, Russell FD. Omega-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci Rep. 2019 Sep 10;9(1):12978. doi: 10.1038/s41598-019-49362-z. PMID: 31506475; PMCID: PMC6736886.
  363. Abd El-Samee LD, El-Wardany I, Abdel-Fattah SA, Abd El-Azeem NA, Elsharkawy MS. Dietary omega-3 and antioxidants improve long-chain omega-3 and lipid oxidation of broiler meat. Bull Natl Res Cent. 2019; 43: 45.
  364. Sivrioglu EY, Kirli S, Sipahioglu D, Gursoy B, Sarandöl E. The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Oct 1;31(7):1493-9. doi: 10.1016/j.pnpbp.2007.07.004. Epub 2007 Jul 13. PMID: 17688987.
  365. Pawełczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Pawełczyk A. Oxidative stress reduction related to the efficacy of n-3 polyunsaturated fatty acids in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized trial. Prostaglandins Leukot Essent Fatty Acids. 2017 Jun;121:7-13. doi: 10.1016/j.plefa.2017.05.004. Epub 2017 May 26. PMID: 28651701.
  366. El-Kott AF, Abd-Lateif AM, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ. 2020 Aug 1;728:138832. doi: 10.1016/j.scitotenv.2020.138832. Epub 2020 Apr 21. PMID: 32353801.
  367. Mert DG, Turgut NH, Arslanbas E, Gungor H, Kara H. The influence of quercetin on recognition memory and brain oxidative damage in a ketamine model of schizophrenia. Psychiatry Clin. Psychopharmacol. 2019; 29: 1-7.
  368. Pandy V, Vijeepallam K. Antipsychotic-like activity of scopoletin and rutin against the positive symptoms of schizophrenia in mouse models. Exp Anim. 2017 Oct 30;66(4):417-423. doi: 10.1538/expanim.17-0050. Epub 2017 Jul 12. PMID: 28701621; PMCID: PMC5682354.
  369. Trebatická J, Ďuračková Z. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy? Oxid Med Cell Longev. 2015;2015:248529. doi: 10.1155/2015/248529. Epub 2015 Jun 9. PMID: 26180581; PMCID: PMC4477218.
  370. Zhang WF, Tan YL, Zhang XY, Chan RC, Wu HR, Zhou DF. Extract of Ginkgo biloba treatment for tardive dyskinesia in schizophrenia: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2011 May;72(5):615-21. doi: 10.4088/JCP.09m05125yel. Epub 2010 Sep 21. PMID: 20868638.
  371. Lamanna-Rama N, Romero-Miguel D, Desco M, Soto-Montenegro ML. An Update on the Exploratory Use of Curcumin in Neuropsychiatric Disorders. Antioxidants (Basel). 2022 Feb 10;11(2):353. doi: 10.3390/antiox11020353. PMID: 35204235; PMCID: PMC8868558.