Research Article

Varicella zoster virus: The potentially useful virus

Al-Anazi KA* and Al-Jasser AM

Published: 07/05/2019 | Volume 3 - Issue 1 | Pages: 011-015

Editorial

Varicella zoster virus (VZV), a double-stranded DNA virus, is a highly contagious human neurotropic virus that belongs to the alpha group of herpes viruses [1-4]. Primary VZV infection (chickenpox) occurs in childhood then the virus becomes latent in the nerve ganglia [1,5-7]. Reactivation of the virus may occur decades later and cause herpes zoster (HZ) which is manifested by a typical painful skin eruption that has characteristic dermatomal distribution [1,5]. Reactivation of VZV is usually predisposed to: old age; comorbid medical conditions such as diabetes mellitus, chronic obstructive airway disease, and end-stage renal disease; and immunosuppression due to malignancy, autoimmune disorders, immunosuppressive therapies, trauma, cytotoxic chemotherapy, hematopoietic stem cell transplantation (HSCT), and solid organ transplantation (SOT) [1,5-7].

Read Full Article HTML DOI: 10.29328/journal.jhcr.1001009 Cite this Article

References

  1. Kennedy PGE, Gershon AA. Clinical features of varicella-zoster virus infection. Viruses. 2018; 10: E609. PubMed: https://bit.ly/2XqPx7d  
  2. Weber DJ. Prevention and control of varicella-zoster virus in hospitals.2019.
  3. Cohrs RJ, Gilden DH, Mahalingam R. Varicella zoster virus latency, neurological disease and experimental models: an update. Front Biosci. 2004; 9: 751-762. PubMed: https://bit.ly/32aVMuQ  
  4. Al-Anazi KA, Kanfar S, Aldayel A, Abduljalil O, Sayyed AH. Reversal of pure red cell aplasia by varicella zoster virus infection. J Hematol Clin Res 2019; 3: 001-010.
  5. Albrecht MA, Levin MJ. Epidemiology, clinical manifestations and diagnosis of herpes zoster. 2019.
  6. Onozawa M, Hashino S, Takahata M, Fujisawa F, Kawamura T, et al. Relationship between preexisting anti-varicella-zoster virus (VZV) antibody and clinical VZV reactivation in hematopoietic stem cell transplantation recipients. J Clin Microbiol. 2006; 44: 4441-4443. PubMed: https://bit.ly/2XnEMOc  
  7. Cvjetković D, Jovanović J, Hrnjaković-Cvjetković I, Brkić S, Bogdanović M. Reactivation of herpes zoster infection by varicella-zoster virus. Med Pregl. 1999; 52: 125-128. PubMed: https://bit.ly/2FTuC1X  
  8. Yetgin S, Kuşkonmaz B, Aytaç S, Cetin M. The evaluation of acquired aplastic anemia in children and unexpected frequency of varicella-zoster virus association: a single-center study. Turk J Pediatr. 2008; 50: 342-348. PubMed: https://bit.ly/2FOIURq  
  9. Pascutti MF, Erkelens MN, Nolte MA. Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol. 2016; 7: 364. PubMed: https://bit.ly/2XrrHTX  
  10. Kakish K, Basak RB, Al Dhuhouri J, Chakraborty S. Four year old child with breakthrough varicella leading to pancytopenia. Bahrain Med Bull. 2009; 31, 2.
  11. Muthu V, Kumar PS, Varma S, Malhotra P. Varicella zoster virus-related pancytopenia. Int J Infect Dis. 2013; 17: e1264. PubMed: https://bit.ly/2xqOsNw  
  12. Kuskonmaz B, Cetin M, Uckan D, Yetgin S. Varicella zoster-associated severe aplastic anemia in a child and its successful treatment with peripheral blood stem cell transplantation from HLA-5/6-identical donor. Med Sci Monit. 2007; 13: CS128-131. PubMed: https://bit.ly/2XnY1qZ  
  13. Ragozzino MW, Melton LJ 3rd, Kurland LT, Chu CP, Perry HO. Risk of cancer after herpes zoster: a population-based study. N Engl J Med. 1982; 307: 393-397. PubMed: https://bit.ly/2RWKYM3  
  14. Ho JD, Xirasagar S, Lin HC. Increased risk of a cancer diagnosis after herpes zoster ophthalmicus: a nationwide population-based study. Ophthalmology. 2011; 118: 1076-1081. PubMed: https://bit.ly/2JoKbj4  
  15. Schmidt SA, Mor A, Schønheyder HC, Sørensen HT, Dekkers OM, et al. Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis. J Infect. 2017; 74: 215-235. PubMed: https://bit.ly/2XE7HC3  
  16. Liu YC, Yang YH, Hsiao HH, Yang WC, Liu TC, et al. Herpes zoster is associated with an increased risk of subsequent lymphoid malignancies - a nationwide population-based matched-control study in Taiwan. BMC Cancer. 2012; 12: 503. PubMed: https://bit.ly/309KcOz  
  17. Mays RM, Murthy RK, Gordon RA, Lapolla WJ, Galfione SK, et al. Diffuse Large B-Cell Lymphoma at the site of a herpes zoster scar. World J Oncol. 2012; 3: 199-203. PubMed: https://bit.ly/2Jlt7up  
  18. Al-Anazi KA, Al-Jasser AM, Evans DA. Effect of varicella zoster virus infection on bone marrow function. Eur J Haematol. 2005; 75: 234-240. PubMed: https://bit.ly/2YwMzL7  
  19. Kamber C, Zimmerli S, Suter-Riniker F, Mueller BU, Taleghani BM, et al. Varicella zoster virus reactivation after autologous SCT is a frequent event and associated with favorable outcome in myeloma patients. Bone Marrow Transplant. 2015; 50: 573-578. PubMed: https://bit.ly/2KXAsU3  
  20. Kawano N, Gondo H, Kamimura T, Aoki K, Iino T, et al. Chronic graft-versus-host disease following varicella-zoster virus infection in allogeneic stem cell transplant recipients. Int J Hematol. 2003; 78: 370-373. PubMed: https://bit.ly/2RQFvXc  
  21. Raymond AK, Singletary HL, Nelson KC, Sidhu-Malik NK. Dermatomal sclerodermoid graft-vs-host disease following varicella-zoster virus infection. Arch Dermatol. 2011; 147: 1121-1122. PubMed: https://bit.ly/2XJokfn  
  22. Baselga E, Drolet BA, Segura AD, Leonardi CL, Esterly NB. Dermatomal lichenoid chronic graft-vs-host disease following varicella-zoster infection despite absence of viral genome. J Cutan Pathol. 1996; 23: 576-581. PubMed: https://bit.ly/2NGLdfA  
  23. Weisdorf D, Zhang MJ, Arora M, Horowitz MM, Rizzo JD, et al. Graft-versus-host disease induced graft-versus-leukemia effect: greater impact on relapse and disease-free survival after reduced intensity conditioning. Biol Blood Marrow Transplant. 2012; 18: 1727-1733. PubMed: https://bit.ly/30a1MSG  
  24. Yeshurun M, Weisdorf D, Rowe JM, Tallman MS, Zhang MJ, et al. The impact of the graft-versus-leukemia effect on survival in acute lymphoblastic leukemia. Blood Adv. 2019; 3: 670-680. PubMed: https://bit.ly/2XE8vqz  
  25. Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015; 2015: 225-30.
  26. Belcaid Z, Lamfers ML, van Beusechem VW, Hoeben RC. Changing faces in virology: the Dutch shift from oncogenic to oncolytic viruses. Hum Gene Ther. 2014; 25: 875-884. PubMed: https://bit.ly/2XrnYWy   
  27. Rudd PA, Herrero LJ. Viruses: Friends and foes. In: Cartilage repair and regeneration. 2017.
  28. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016; 107: 1373-1379. PubMed: https://bit.ly/2xqQbT0  
  29. Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer. 2017; 5: 90.
  30. Howells A, Marelli G Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017; 7: 195. PubMed: https://bit.ly/2LAu6th  
  31. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, et al. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013; 119: 421-475. PubMed: https://bit.ly/2RTgtqa  
  32. Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers. 2018; 10: E124. PubMed: https://bit.ly/2KYBwY1  
  33. Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol. 2012; 13: 1817-1833. PubMed: https://bit.ly/30cuW3G  
  34. Amirian ES, Scheurer ME, Zhou R, Wrensch MR, Armstrong GN, et al. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med. 2016; 5: 1352-1358. PubMed: https://bit.ly/2Nx6Cbg  
  35. Pundole X, Amirian ES, Scheurer ME. Role of varicella zoster virus in glioma risk: Current knowledge and future directions. OA Epidemiology. 2014; 2: 6.
  36. Canniff J, Donson AM, Foreman NK, Weinberg A. Cytotoxicity of glioblastoma cells mediated ex vivo by varicella-zoster virus-specific T cells. J Neurovirol. 2011; 17: 448-454. PubMed: https://bit.ly/2YCBWqg  
  37. Leske H, Haase R, Restle F, Schichor C, Albrecht V, et al. Varicella zoster virus infection of malignant glioma cell cultures: a new candidate for oncolytic virotherapy? Anticancer Res. 2012; 32: 1137-1144.
  38. Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens. 2013; 2: 364-382. PubMed: https://bit.ly/2JmPjEp  
  39. Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB. Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog. 2013; 9: e1003512. PubMed: https://bit.ly/2Xsp7SM  
  40. Shahzad A, Gilden D, Cohrs RJ. Translational medicine and varicella zoster virus: Need for disease modeling. New Horiz Transl Med. 2015; 2: 89-91. PubMed: https://bit.ly/2xsMZ9h  
  41. Harada K, Heaton H, Chen J, Vazquez M, Meyer J. Zoster vaccine-associated primary varicella infection in an immunocompetent host. BMJ Case Rep. 2017; 2017: bcr-2017-221166. PubMed: https://bit.ly/2XJoDXz  
  42. Leung J, Broder KR, Marin M. Severe varicella in persons vaccinated with varicella vaccine (breakthrough varicella): A systematic literature review. Expert Rev Vaccines. 2017; 16: 391-400. PubMed: https://bit.ly/2LCIscz  
  43. Khandelwal P, Marsh RA, Scott Scmid D, Radford KW, Bleesing J, et al. Case series of vaccine associated varicella zoster virus infection in immune compromised patients. Biol Blood Marrow Transplant. 2013; 19: S250.
  44. Bhalla P, Forrest GN, Gershon M, Zhou Y, Chen J, et al. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin Infect Dis. 2015; 60: 1068-1074. PubMed: https://bit.ly/2NxuXNW  
  45. Willis ED, Woodward M, Brown E, Popmihajlov Z, Saddier P, et al. Herpes zoster vaccine live: a 10 year review of post-marketing safety experience. Vaccine. 2017; 35: 7231-7239. PubMed: https://bit.ly/2FTwTu1  
  46. Wang L, Verschuuren EAM, van Leer-Buter CC, Bakker SJL, de Joode AAE, et al. Herpes zoster and immunogenicity and safety of zoster vaccines in transplant patients: a narrative review of the literature. Front Immunol. 2018; 9: 1632. PubMed: https://bit.ly/2Nz1a7F  
  47. Aoki T, Koh K, Kawano Y, Mori M, Arakawa Y, et al. Safety of live attenuated high-titer varicella-zoster virus vaccine in pediatric allogeneic hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2016; 22: 771-775. PubMed: https://bit.ly/30cIWuk  
  48. Winston DJ, Mullane KM, Cornely OA, Boeckh MJ, Brown JW, et al.; V212 Protocol 001 Trial Team. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: An international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2018; 391: 2116-2127. PubMed: https://bit.ly/2NwjDBI  
  49. Sasadeusz J, Prince HM, Schwarer A, Szer J, Stork A, et al. Immunogenicity and safety of a two-dose live attenuated varicella vaccine given to adults following autologous hematopoietic stem cell transplantation. Transpl Infect Dis. 2014; 16: 1024-1031. PubMed: https://bit.ly/2NA4sre  
  50. Parrino J, McNeil SA, Lawrence SJ, Kimby E, Pagnoni MF, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine. 2017; 35: 1764-1769. PubMed: https://bit.ly/2Jc7XA8  
  51. Leung TF, Li CK, Hung EC, Chan PK, Mo CW, et al. Immunogenicity of a two-dose regime of varicella vaccine in children with cancers. Eur J Haematol. 2004; 72: 353-357. PubMed: https://bit.ly/2xsqgu5  
  52. Ohfuji S, Ito K, Inoue M, Ishibashi M, Kumashiro H, et al. Safety of live attenuated varicella-zoster vaccine in patients with underlying illnesses compared with healthy adults: A prospective cohort study. BMC Infect Dis. 2019; 19: 95. PubMed: https://bit.ly/2S2jtkt  
  53. Eberhardson M, Hall S, Papp KA, Sterling TM, Stek JE, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with autoimmune disease: A phase 2, randomized, double-blind, placebo-controlled clinical trial. Clin Infect Dis. 2017; 65: 1174-1182. PubMed: https://bit.ly/2Xr0DZT  
  54. Russell AF, Parrino J, Fisher CL Jr, Spieler W, Stek JE, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects on chronic/ maintenance corticosteroids. Vaccine. 2015; 33: 3129-3134. PubMed: https://bit.ly/2FQXMyM  
  55. Mills R, Tyring SK, Levin MJ, Parrino J, Li X, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects with a history of herpes zoster. Vaccine. 2010; 28: 4204-4209. PubMed: https://tinyurl.com/y6sa9nhs  
  56. Agarwala S, Tamplin OJ. Neural crossroads in the hematopoietic stem cell niche. Trends Cell Biol. 2018; 28: 987-998. PubMed: https://tinyurl.com/yxjeyetc  
  57. Boiko JR, Borghesi L. Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine. 2012; 57:1-8. PubMed: https://tinyurl.com/y4gk5xcw  
  58. Zhao JL, Baltimore D. Regulation of stress-induced hematopoiesis. Curr Opin Hematol. 2015; 22: 286-292.
  59. Pleyer L, Valent P, Greil R. Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis-masters of survival and clonality? Int J Mol Sci. 2016; 17: E1009. PubMed: https://tinyurl.com/y56v96kc  
  60. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS One. 2013; 8: e71412. PubMed: https://tinyurl.com/y6s43fcl  
  61. Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood. 2012; 119:1801-1809. PubMed: https://tinyurl.com/y3473tet  
  62. Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered mesenchymal stem cells as an anti-cancer Trojan horse. Stem Cells Dev. 2016; 25: 1513-1531. PubMed: https://tinyurl.com/y5x8ths2  
  63. Abendroth A, Morrow G, Cunningham AL, Slobedman B. Varicella-zoster virus infection of human dendritic cells and transmission to T cells: Implications for virus dissemination in the host. J Virol. 2001; 75: 6183-6192. PubMed: https://tinyurl.com/y3uvhnd4  
  64. Morrow G, Slobedman B, Cunningham AL, Abendroth A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J. Virol. 2003; 77: 4950-4959. PubMed: https://tinyurl.com/y53kdqqs  
  65. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127: 3341-3349. PubMed: https://tinyurl.com/y36xbrcu  
  66. Campbell TM, McSharry BP, Steain M, Ashhurst TM, Slobedman B, et al. Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathog. 2018; 14: e1006999. PubMed: https://tinyurl.com/y6eusgrw  
  67. Weinberg A, Levin MJ. VZV T cell-mediated immunity. Curr Top Microbiol. Immunol. 2010; 342: 341-57.
  68. Jones D, Como CN, Jing L, Blackmon A, Neff CP, et al. Varicella zoster virus productively infects human peripheral blood mononuclear cells to modulate expression of immunoinhibitory proteins and blocking PD-L1 enhances virus-specific CD8+ T cell effector function. PLoS Pathog. 2019; 15: e1007650. PubMed: https://tinyurl.com/y3bww5x6  
  69. Sommer MH, Zagha E, Serrano OK, Ku CC, Zerboni L, et al. Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J Virol. 2001; 75: 8224-8239. PubMed: https://tinyurl.com/y29a7r7r  
  70. Lenac Roviš T, Bailer SM, Pothineni VR, Ouwendijk WJ, Šimić H, et al. Comprehensive analysis of varicella-zoster virus proteins using a new monoclonal antibody collection. J Virol. 2013; 87: 6943-6954. PubMed: https://tinyurl.com/y3w5paex  
  71. Lallemand-Breitenbach V, de Thé H. PML nuclear bodies. Curr Opin Cell Biol. 2018; 52: 154-161. PubMed: https://tinyurl.com/y4plm9lj  
  72. Kyratsous CA, Silverstein SJ. BAG3, a host cochaperone, facilitates varicella-zoster virus replication. J Virol. 2007; 81: 7491-7503. PubMed: https://tinyurl.com/y5r9yg7o  
  73. Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol. 2013; 2: 79-90. PubMed: https://tinyurl.com/y3ntxxq8  
  74. Bello-Morales R, López-Guerrero JA. Extracellular vesicles in herpes viral spread and immune evasion. Front Microbiol. 2018; 9: 2572. PubMed: https://tinyurl.com/y435rqj5  
  75. Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics. 2016; 13: 535-546.
  76. Li X, Huang Y, Zhang Y, He N. Evaluation of microRNA expression in patients with herpes zoster. Viruses. 2016; 8: E326. PubMed: https://tinyurl.com/y4fxlzdz  
  77. Zajkowska A, Garkowski A, Świerzbińska R, Kułakowska A, Król ME, et al. Evaluation of chosen cytokine levels among patients with herpes zoster as ability to provide immune response. PLoS One. 2016; 11: e0150301. PubMed: https://tinyurl.com/y4a6gg23  
  78. Zak-Prelich M, McKenzie RC, Sysa-Jedrzejowska A, Norval M. Local immune responses and systemic cytokine responses in zoster: relationship to the development of postherpetic neuralgia. Clin Exp Immunol. 2003; 131: 318-323. PubMed: https://tinyurl.com/y3spcyb9  
  79. Jones D, Neff CP, Palmer BE, Stenmark K, Nagel MA. Varicella zoster virus-infected cerebrovascular cells produce a proinflammatory environment. Neurol Neuroimmunol Neuroinflamm. 2017; 4: e382. PubMed: https://tinyurl.com/y5r8jtq7  
  80. Bubak AN, Como CN, Blackmon AM, Jones D, Nagel MA. Varicella zoster virus differentially alters morphology and suppresses proinflammatory cytokines in primary human spinal cord and hippocampal astrocytes. J Neuroinflammation. 2018; 15: 318. PubMed: https://tinyurl.com/y3uc6edb  
  81. de Visser L, H de Boer J, T Rijkers G, Wiertz K, van den Ham HJ, et al. Cytokines and chemokines involved in acute retinal necrosis. Invest Ophthalmol Vis Sci. 2017; 58: 2139-2151. PubMed: https://tinyurl.com/y2ome53j  
  82. Verweij MC, Wellish M, Whitmer T, Malouli D, Lapel M, et al. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog. 2015; 11: e1004901. PubMed: https://tinyurl.com/y6nn3dsp  
  83. Rahaus M, Desloges N, Wolff MH. Varicella-zoster virus influences the activities of components and targets of the ERK signalling pathway. J Gen Virol. 2006; 87: 749-758. PubMed: https://tinyurl.com/y2axb3fg  
  84. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, et al. Role of the JNK pathway in varicella-zoster virus lytic infection and Reactivation. J Virol. 2017; 91: e00640-17. PubMed: https://tinyurl.com/y55zksve  
  85. Rahaus M, Desloges N, Wolff MH. Varicella-zoster virus requires a functional PI3K/Akt/GSK-3alpha/beta signaling cascade for efficient replication. Cell Signal. 2007; 19: 312-320. PubMed: https://tinyurl.com/y3magfsr  
  86. Grigoryan S, Yee MB, Glick Y, Gerber D, Kepten E, et al. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons. PLoS One. 2015; 10: e0126081. PubMed: https://tinyurl.com/y68bxr5w
  87. Grose C, Buckingham EM, Carpenter JE, Kunkel JP. Varicella-zoster virus infectious cycle: ER stress, autophagic flux, and amphisome-mediated trafficking. Pathogens. 2016; 5: E67. PubMed: https://tinyurl.com/y63xvhww