Research Article

Femoral venous closure: A single-centre retrospective analysis in real world all comers with MynxGrip® vascular closure device

Alexander Harvard, Shamin Thirunavukarasu, Afzal Hayat, Abid Ullah, Reza Aghamohammadzadeh, Cathy Mary Holt and Nadim Malik*

Published: 06/18/2020 | Volume 5 - Issue 2 | Pages: 136-140

Abstract

Background: Vascular closure devices (VCD) are routinely used to achieve haemostasis following percutaneous arterial procedures. The extravascular polyethylene-glycol based MynxGrip® device (Cardinal Health) received FDA approval for use in the closure of femoral veins, but so far limited data is available on its use, especially with concomitant use of anticoagulants.

Method: This is a retrospective analysis of data from a single-centre on the effectiveness and complication rates following the use of the MynxGrip® device for femoral venous closure in patients undergoing diagnostic/interventional (temporary pacing during balloon aortic valvuloplasty, or electrophysiology) procedures utilising 5-7F sheaths.

Results: 85 patients (mean age 74 years) underwent femoral venous closure with the MynxGrip® device. 51.8% were male. The rate of concomitant anticoagulant or antiplatelet use was 52.9%. Device deployment was 100% successful with full haemostasis in all cases. There were no major vascular complications (bleeding, thrombosis, or infections). There was one case of a minor small venous hematoma which did not require treatment. The mean length of stay was less than 1 day (67.1% patients discharged the same day) and overnight stay only indicated by interventional procedure.

Conclusion: This data supports safety and efficacy of the MynxGrip® device for femoral venous closure with same-day discharge, even with concomitant aggressive antiplatelet and anticoagulant use. It has the potential for use in other large bore venous access sites.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001100 Cite this Article

References

  1. Noori VJ, Eldrup-Jørgensen J. A systematic review of vascular closure devices for femoral artery puncture sites. J Vasc Surg. 2018; 68: 887-899. PubMed: https://pubmed.ncbi.nlm.nih.gov/30146036
  2. Fargen KM, Hoh BL, Mocco J. A prospective randomized single-blind trial of patient comfort following vessel closure: extravascular synthetic sealant closure provides less pain than a self-tightening suture vascular compression device. J Neurointerv Surg. 2011; 3: 219-223. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21990828
  3. Robertson L, Andras A, Colgan F, Jackson R. Vascular closure devices for femoral arterial puncture site haemostasis. Cochrane Database Syst Rev. 2016; 3: CD009541. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26948236
  4. Cox T, Blair L, Huntington C, Lincourt A, Sing R, et al. Systematic Review of Randomized Controlled Trials Comparing Manual Compression to Vascular Closure Devices for Diagnostic and Therapeutic Arterial Procedures. Surg Technol Int. 2015; 27: 32-44. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26680377
  5. Tsui JY, Collins AB, White DW, Lai J, Tabas JA. Videos in clinical medicine. Placement of a femoral venous catheter. N Engl J Med. 2008; 358: e30. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18579807
  6. Coto HA. Closure of the femoral vein puncture site after transcatheter procedures using Angio-Seal. Catheter Cardiovasc Interv. 2002; 55: 16-19. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11793489
  7. Maraj I, Budzikowski AS, Ali W, Mitre CA, Kassotis J. Use of vascular closure device is safe and effective in electrophysiological procedures. J Interv Card Electrophysiol. 2015; 43: 193-195.
  8. Shaw JA, Dewire E, Nugent A, Eisenhauer AC. Use of suture-mediated vascular closure devices for the management of femoral vein access after transcatheter procedures. Catheter Cardiovasc Interv. 2004; 63: 439-443. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15558775
  9. Mahadevan VS, Jimeno S, Benson LN, McLaughlin PR, Horlick EM. Pre-closure of femoral venous access sites used for large-sized sheath insertion with the Perclose device in adults undergoing cardiac intervention. Heart. 2008; 94: 571-572. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17085529
  10. Mylonas I, Sakata Y, Salinger M, Sanborn TA, Feldman T. The use of percutaneous suture-mediated closure for the management of 14 French femoral venous access. J Invasive Cardiol. 2006; 18: 299-302. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16816433
  11. Rüter K, Puls M, von der Ehe K, Tichelbäcker T, Sobisiak B, et al. Preclosure of femoral vein access site with the suture-mediated Proglide device during MitraClip implantation. J Invasive Cardiol. 2013; 25: 508-510. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24088424
  12. Hamid T, Rajagopal R, Pius C, Clarke B, Mahadevan VS. Preclosure of large-sized venous access sites in adults undergoing transcatheter structural interventions. Catheter Cardiovasc Interv. 2013; 81: 586-590. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22431302
  13. Geis NA, Pleger ST, Chorianopoulos E, Müller OJ, Katus HA, et al. Feasibility and clinical benefit of a suture-mediated closure device for femoral vein access after percutaneous edge-to-edge mitral valve repair. EuroIntervention. 2015; 10: 1346-1353. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24694560
  14. Dou E, Winokur RS, Sista AK. Venous Access Site Closures Using the VASCADE Vascular Closure System. J Vasc Interv Radiol. 2016; 27: 1885-1888. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27886954
  15. Hmoud H, Sturla M, Delucia L, DeGregorio L, DeGregorio J. Closure of mid-bore venotomies with VASCADE VCD after right and left heart catheterization. Catheter Cardiovasc Interv. 2019; 93: 626-630. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30280486
  16. Srivatsa SS, Srivatsa A, Spangler TA. Mynx vascular closure device achieves reliable closure and hemostasis of percutaneous transfemoral venous access in a porcine vascular model. J Invasive Cardiol. 2015; 27: 121-127. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25661765
  17. Ben-Dor I, Craig P, Torguson R, Rogers T, Buchanan KD, et al. MynxGrip® vascular closure device versus manual compression for hemostasis of percutaneous transfemoral venous access closure: Results from a prospective multicenter randomized study. Cardiovasc Revasc Med. 2018; 19: 418-422. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29656937
  18. Hutchings D, Hayat A, Karunakaran A, Malik N. Success, Safety, and Efficacy of the Mynx Femoral Closure Device in a Real-World Cohort: Single-Center Experience. J Invasive Cardiol. 2016; 28: 104-108. PubMed: https://pubmed.ncbi.nlm.nih.gov/26945253
  19. Verma D, Lee N, Tandar A, Badger T, Dranow E, et al. A Propensity Score Analysis of Venous Access Closure Using Extravascular Closure Device In High Risk Patients. J Am College Cardiol. 2014; 64: B248-B.
  20. Waksman R, Ben-Dor I, Rogers T, Torguson R, Buchanan K, et al. Mynxgrip vascular closure device is safe and effective for hemostasis of percutaneous transfemoral venous access closure. J Am College Cardiol. 2018; 71: 1432.
  21. Fields JD, Liu KC, Lee DS, Gonda SJ, Dogan A, et al. Femoral artery complications associated with the Mynx closure device. AJNR Am J Neuroradiol. 2010; 31: 1737-1740.
  22. Islam MA, George AK, Norris M. Popliteal artery embolization with the Mynx closure device. Catheter Cardiovasc Interv. 2010; 75: 35-37. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19708082
  23. Noor S, Meyers S, Curl R. Successful reduction of surgeries secondary to arterial access site complications: a retrospective review at a single center with an extravascular closure device. Vasc Endovascular Surg. 2010; 44: 345-349. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20484072
  24. Gupta A, Perera T, Ganesan A, Sullivan T, Lau DH, et al. Complications of catheter ablation of atrial fibrillation: a systematic review. Circ Arrhythm Electrophysiol. 2013; 6: 1082-1088. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24243785