Research Article

The properties of nonlinear excitations and verification of validity of theory of energy transport in the protein molecules

Pang Xiao-Feng*

Published: 04/09/2018 | Volume 2 - Issue 1 | Pages: 058-108

Abstract

Based on different properties of structure of helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov’s, Brown et al’s, Schweitzer’s, Cruzeiro-Hansson’s, Forner‘s and Pang’s models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties and stability of the carriers (solitons) transporting the bio-energy at physiological temperature 300K in Pang’s and Davydov’s theories. However, these theoretical models including Davydov’s and Pang’s model were all established based on a periodic and uniform proteins, which are different from practically biological proteins molecules. Therefore, it is very necessary to inspect and verify the validity of the theory of bio-energy transport in really biological protein molecules. These problems were extensively studied by a lot of researchers and using different methods in past thirty years, a considerable number of research results were obtained. I here reviewed the situations and progresses of study on this problem, in which we reviewed the correctness of the theory of bio-energy transport including Davydov’s and Pang’s model and its investigated progresses under influences of structure nonuniformity and disorder, side groups and imported impurities of protein chains as well as the thermal perturbation and damping of medium arising from the biological temperature of the systems. The structure nonuniformity arises from the disorder distribution of sequence of masses of amino acid residues and side groups and imported impurities, which results in the changes and fluctuations of the spring constant, dipole-dipole interaction, exciton-phonon coupling constant, diagonal disorder or ground state energy and chain-chain interaction among the molecular channels in the dynamic equations in different models. The influences of structure nonuniformity, side groups and imported impurities as well as the thermal perturbation and damping of medium on the bio-energy transport in the proteins with single chain and three chains were studied by differently numerical simulation technique and methods containing the average Hamiltonian way of thermal perturbation, fourth-order Runge-Kutta method, Monte Carlo method, quantum perturbed way and thermodynamic and statistical method, and so on. In this review the numerical simulation results of bio-energy transport in uniform protein molecules, the influence of structure nonuniformity on the bio-energy transport, the effects of temperature of systems on the bio-energy transport and the simultaneous effects of structure nonuniformity, damping and thermal perturbation of proteins on the bio-energy transport in a single chains and helical molecules were included and studied, respectively. The results obtained from these studies and reviews represent that Davydov’s soliton is really unstable, but Pang’s soliton is stable at physiologic temperature 300K and underinfluences of structure nonuniformity or disorder, side groups, imported impurities and damping of medium, which is consistent with analytic results. Thus we can still conclude that the soliton in Pang’s model is exactly a carrier of the bio-energy transport, Pang’s theory is appropriate to helical protein molecules.

Read Full Article HTML DOI: 10.29328/journal.apb.1001006 Cite this Article

Refrences

  1. Pang Xiao-feng, Biophysics, The press of Univ. of Electronic Sci. Techno of China, Chengdu. 2007.
  2. Szent-Gyorgy A. Towards a New Biochemistry. Science. 1941; 93: 609-611. Ref.: https://goo.gl/sWcamx
  3. Bakhshi AK, Otto P, Ladik J, Seel M. Chem Phys. 1986; 20: 687.
  4. Schulz GE, Schirmar RH, Principles of protein molecules. Springer. 1979.
  5. Davydov AS. The theory of contraction of proteins under their excitation. J Theor Biol. 1973; 38: 559-569. Ref.: https://goo.gl/eD18C2
  6. Davydov AS. Solitons and energy transfer along protein molecules. J Theor Biol. 1977; 66: 379-387. Ref.: https://goo.gl/d3gYhb
  7. Davydov AS. Solitons in Molecular Systems. Phys Scr. 1979; 20: 387. Ref.: https://goo.gl/ncUh61
  8. Hyman JM, McLaughlin DW, Scott AC. On Davydov’s alpha-helix solitons. Physica 1981; 3: 23-44. Ref.: https://goo.gl/AqFHcb
  9. Davydov AS. Sov Phys USP. 1982; 25: 898.
  10. Davydov AS. Biology and quantum mechanics. Pergamon. 1982.
  11. Davydov AS.The solitons in molecular systems. Reidel. 1985.
  12. Davydov AS, Kislukha NI. Solitons in One‐Dimensional Molecular Chains. Phys Stat Sol. 1973; 59: 465. Ref.: https://goo.gl/S79fp5
  13. Davydov AS, Kislukha NI, Phys Stat Sol. 1977; 75: 735.
  14. Brizhik LS, Davydov AS. Soliton excitations in one‐dimensional molecular systems. Phys Stat Sol. 1983; 115: 615-630. Ref.: https://goo.gl/vbQUNf
  15. Scott AC. Dynamics of Davydov solitons. Phys Rev A. 1982; 26: 578. Ref.: https://goo.gl/EjDG4d
  16. Scott AC. Dynamics of Davydov solitons. Phys Rev A. 1983; 27: 2767. Ref.: https://goo.gl/avWRcS
  17. Scott AC. The Vibrational Structure of Davydov Solitons. Phys Scr. 1982; 25: 651. Ref.: https://goo.gl/27Y3zh
  18. Scott AC. Launching a Davydov Soliton: I. Soliton Analysis. Phys Scr. 1984; 29: 279. Ref.: https://goo.gl/d8tyZp
  19. Scott AC. Davydov’s soliton. Phys Rep. 1992; 217: 1-67. Ref.: https://goo.gl/UF4wXJ
  20. Scott AC. Physica. 1990; 51: 333.
  21. Brown DW, West BJ, Lindenberg K. Phys Rev A. 1986; 33: 4104.
  22. Brown DW, West BJ, Lindenberg K. Davydov solitons: New results at variance with standard derivations. Phys Rev A Gen Phys. 1986; 33: 4110-4120. Ref.: https://goo.gl/U36Cyg
  23. Brown DW, Lindenberg K, West BJ. Phys Rev B. 1987; 35: 6169.
  24. Brown DW, Lindenberg K, West BJ. Phys Rev B. 1988; 37: 2946.
  25. Brown DW, Lindenberg K, West BJ. Phys Rev Lett. 1986; 57: 234.
  26. Brown DW. Phys Rev A. 1988; 37: 5010.
  27. Brown DW. Ivic Z. Phys Rev B. 1989; 40: 9876.
  28. Ivic Z, Brown DW. Phys Rev Lett. 1989; 63: 426.
  29. Skrinjar MJ, Kapor DW, Stojanovic SD. Phys RevA. 1988; 38: 6402.
  30. Skrinjar MJ, Kapor DW, Stojanovic SD. Phys Rev B. 1989; 40: 1984.
  31. Skrinjar MJ, Kapor DW, Stojanovic SD. Phys Lett A. 1988; 133: 489.
  32. Skrinjar MJ, Kapor DW, Stojanovic SD. Phys Scr. 1988; 39. 658.
  33. Pang Xiao-feng. Chin J Biochem Biophys. 1986; 18: 1.
  34. Pang Xiao-feng. Chin J Atom Mol Phys. 1986; 6: 275.
  35. Pang Xiao-feng. Chin J Appl Math. 1986; 10: 278.
  36. Christiansen PL, Scott AC. Davydov’s soliton revisited: Self-trapping of vibrational energy. Plenum Press. 1990. Ref.: https://goo.gl/vp52Y6
  37. Davydov AS, Zh Eksp Teor Fiz. 1980; 78: 789.
  38. Davydov AS. The lifetime of molecular (Davydov) solitons. J Biol Phys. 1991; 18: 111-125. Ref.: https://goo.gl/61DRMB
  39. Cruzeiro L, Halding J, Christiansen PL, Skovgard O, Scott AC. Phys Rev A. 1985; 37: 703.
  40. Cruzeiro L. Proteins multi‐funnel energy landscape and misfolding diseases. J Phys Org Chem. 2008; 21, 549-554. Ref.: https://goo.gl/jGL7mj
  41. Cruzeiro L. Influence of the sign of the coupling on the temperature dependence of optical properties of one-dimensional exciton models. J Phys B: At Mol Opt Phys. 2008; 41: 195401. Ref.: https://goo.gl/PfdHnN
  42. Cruzeiro L. The Davydov/Scott Model for Energy Storage and Transport in Proteinsm. J Bio Physics. 2009; 35: 43-55. Ref.: https://goo.gl/tn9DNP
  43. Cruzeiro L. J Chem Phys. 2005; 123: 4909.
  44. Cruzeiro L. J Phys: Condens Matter. 2005; 17: 7833-7844.
  45. Cruzeiro-Hansson L. Phys Rev A. 1992; 45: 4111.
  46. Cruzeiro-Hansson L. Physica D. 1993; 68: 65.
  47. Cruzeiro-Hansson L. Two Reasons Why the Davydov Soliton May Be Thermally Stable After All. Phys Rev Lett. 1994; 73: 2927. Ref.: https://goo.gl/dBb6L8
  48. Cruzeio-Hansson L, Kenker VM, Scott AC. Phys Lett A. 1994; 190: 59.
  49. Cruzeiro-Hansson L, Takeno S. Davydov Model: The Quantum, Mixed Quantum-Classical and Full Classical Systems. Phys Rev E. 1997; 56: 894-906. Ref.: https://goo.gl/wA69g5
  50. Forner W. Quantum and disorder effects in Davydov soliton theory. Phys Rev A. 1991; 44: 2694-2708. Ref.: https://goo.gl/hxgPWm
  51. Forner W. Physica D. 1993; 68: 68.
  52. Forner W. J Comput Chem. 1992; 13: 275.
  53. Forner W. Davydov soliton dynamics: temperature effects. J Phys Condensed Matter. 1991; 3: 1915. Ref.: https://goo.gl/oA52P6
  54. Forner W. J Phys Condensed Matter. 1992; 4: 4333.
  55. Forner W. Quantum and temperature effects on Davydov soliton dynamics. IV. Lattice with a thermal phonon distribution. J Phys Condensed Matter. 1993; 5: 823. Ref.: https://goo.gl/xU7y5Z
  56. Forner W. J Phys Condensed Matter. 1993; 5: 883.
  57. Forner W. Launching a Davydov Soliton: II. Numerical Studies. J Phys Condensed Matter. 1993; 5: 3883. Ref.: https://goo.gl/NrhAug
  58. Forner W. Quantum and temperature effects on Davydov soliton dynamics. V. Numerical estimate of the errors introduced by the |D1> ansatz. J Phys Condensed Matter. 1993; 5: 3897. Ref.: https://goo.gl/xEHco6
  59. Motschman H, Forner W, Ladik J. J Phys Condensed Matter. 1989; 1: 5083.
  60. Forner W. J Phys Condensed Matter. 1994; 6: 9089-9151.
  61. Forner W. J Mol Model. 1996; 2: 70-135.
  62. Lomdahl PS, Kerr WC. Do Davydov Solitons Exist at 300 K?. Phys Rev Lett. 1985; 55: 1235. Ref.: https://goo.gl/nZVG4M
  63. Kerr WC, Lomdahl PS. Phys Rev B. 1989; 35: 3629.
  64. Wang X, Brown DW, Lindenberg K. Phys Rev Lett. 1989; 62: 1792.
  65. Wang X, Brown DW, Lindenberg K. Phys Rev A. 1988; 37: 3357.
  66. Cottingham JP, Schweitzer JW. Phys Rev Lett. 1989; 62: 1792.
  67. Schweitzer JW. Phys Rev A. 1992; 45: 8914.
  68. Hyman JM, Mclaughlin DW, Scott AC. Physica D. 1981; 3: 23.
  69. Lawrence AF, McDaniel JC, Chang DB, Pierce BM, Brirge RR. Phys Rev A. 1986; 33: 1188.
  70. Mechtly B, Shaw PB. Evolution of a molecular exciton on a Davydov lattice at T=0. Phys Rev B. 1988; 38: 3075. Ref.: https://goo.gl/h6MAfm
  71. Macneil L, Scott AC. Launching a Davydov Soliton: II. Numerical Studies. Phys Scr. 1984; 29: 284. Ref.: https://goo.gl/uGPGxS
  72. Bolterauer H, Opper M, Z Phys B. 1991; 82: 95.
  73. Eibeck JC, Lomdahl PS, Scott AC. Phys Rev B. 1984; 30: 4703.
  74. Forner W. J Phys Condensed Matter. 1991; 3: 3235.
  75. Takeno S. Vibron Solitons in One-Dimensional Molecular Crystals. Prog Theor Phys. 1984; 71: 395-398. Ref.: https://goo.gl/aHoKxr
  76. Takeno S. Vibron Solitons and Coherent Polarization in an Exactly Tractable Oscillator-Lattice System: Applications to Solitons in α Helical Proteins and Fröhlich’s Idea of Biological Activity. Prog Theor Phys. 1985; 73: 853-873. Ref.: https://goo.gl/AikZa9
  77. Takeno S. J Phys Soc. 1991; 59: 3127.
  78. Pang Xiao-feng. The properties of the collective excitation in the organic protein molecular system. J Phys Condensed Matter. 1990; 2: 9541. Ref.: https://goo.gl/ntwSW6
  79. Pang Xiao-feng. Phys Rev E. 1994; 49: 4747.
  80. Pang Xiao-feng. European Phys J B. 1999; 10: 415.
  81. Pang Xiao-feng. Chin Phys Lett. 1993; 10: 381.
  82. Pang Xiao-feng. Quantum-Mechanical Method for the Soliton Transported Bio-energy in Protein. Chin Phys Lett. 1993; 10: 437. Ref.: https://goo.gl/Msk85t
  83. Pang Xiao-feng. Stability of the Soliton Excited in Protein in the Biologic Temperature Range. Chin Phys Lett. 1993; 10: 573-576. Ref.: https://goo.gl/2HTSxw  
  84. Pang Xiao-feng. Chin Science Bulletin. 1993; 38: 1572.
  85. Pang Xiao-feng. Chin Science Bulletin. 1993; 38: 1665.
  86. Pang Xiao-feng. Chin J Biophys. 1993; 9: 637.
  87. Pang Xiao-feng. Chin J Biophys. 1994; 10: 133.
  88. Pang Xiao-feng. Chin J Bio-chem Biophys. 1986; 18: 1-8.
  89. Pang Xiao-feng. Acta Math Sci. 1993; 13: 437.
  90. Pang Xiao-feng. Acta Math Sci. 1996; 16: 1.
  91. Pang Xiao-feng. Acta Phys Sinica. 1993; 42: 1856.
  92. Pang Xiao-feng. Acta Phys Sinica. 1997; 46: 625.
  93. Pang Xiao-feng. Chin J Infrared Millimeter Waves. 1993; 12: 377.
  94. Pang Xiao-feng. Chin J Infrared Millimeter Waves. 1997; 16: 64.
  95. Pang Xiao-feng. Chin J Infrared Millimeter Waves. 1997; 16: 301.
  96. Pang Xiao-feng. Chin J Atom Mol Phys. 1987; 5: 383.
  97. Pang Xiao-feng. Chin J Atom Mol Phys. 1995; 12: 411.
  98. Pang Xiao-feng. Chin J Atom Mol Phys. 1996; 13: 70.
  99. Pang Xiao-feng. Chin J Atom Mol Phys. 1997; 14: 232.
  100. Pang Xiao-feng. The theory for non linear quantum mechanics, Chinese Chongqing Press, Chongqing. Sci Res. 1994; 415-686. Ref.: https://goo.gl/sfkhix
  101. Pang Xiao-feng. Acta Phys Slovaca. 1998; 47: 89.
  102. Pang Xiao-feng. J Phys Condensed Matter. 2000; 12: 885.
  103. Pang Xiao-feng. Chinese Physics. 2000; 9: 86.
  104. Pang Xiao-feng. Phys Rev E. 2000; 62: 6989.
  105. Pang Xiao-feng. European Phys J B. 2001; 19: 297
  106. Pang Xiao-feng. Commun Theor Phys. 2001; 35: 323.
  107. Pang Xiao-feng. Commun Theor Phys. 2002; 36: 178.
  108. Pang Xiao-feng. J Int Inf Mill Waves. 2001; 22: 291.
  109. Pang Xiao-feng. J Phys Chem Solids. 2001; 62: 793.
  110. Pang Xiao-feng. Chin J BioMed Engineering. 1999; 8: 39.
  111. Pang Xiao-feng. Chin J BioMed Engineering. 2001; 10: 613.
  112. Pang Xiao-feng, Feng Yuan-ping. Quantum mechanics in nonlinear systems. World Science Publishing Co. 2005; 471-551.
  113. Pang Xiao-feng, Zhang Huai-wu, Yu Jia-feng, Feng Yuan-ping. States and properties of the soliton transported bio-energy in nonuniform protein molecules at physiological temperature. Phys Lett A. 2005; 335: 408-416. Ref.: https://goo.gl/iv5LJX
  114. Pang Xiao-feng, Luo Yui-hue. Commun Theor Phys. 2004; 41: 470.
  115. Pang Xiao-feng, Luo Yui-hue. Commun Theor Phys. 2005; 43: 367.
  116. Pang Xiao-feng, Yu Jia-feng, Luo Yu-hui. Commun Theor Physics. 2005; 43: 367-376.
  117. Pang Xiao-feng, Zhang Huai-wu. J Physics Chemistry Solids. 2005; 66: 963- 972.
  118. Pang Xiao-feng , Zhang Huai-Wu, Yu Jia-feng, Luo Yu-hui. Int J Modern Physics B. 2005; 19: 4677-4699.
  119. Pang Xiao-feng, Zhang Huai-wu, Yu Jia-feng. J Phys Condensed Matter. 2006; 18: 613-627.
  120. Pang Xiao-feng, Zhang Huai-Wu,Yu Jia-feng, Luo yu-hui. Int J Modern Physics B. 2006; 20: 3027.
  121. Pang Xiao-feng, Yu Jia-feng, Lao Yu-hui. Inter J Mod Phys B. 2007; 21: 13-42.
  122. Pang Xiao-feng, Liu Mei-jie. Commun Theory Physics. 2007; 48: 369-376.
  123. Pang Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II). Frontiers Physics China. 2008; 3: 457-488. Ref.: https://goo.gl/VEDfjP
  124. Pang Xiao-Feng, LIU Mei-Jie. Commun Theor Phys. 2009; 51: 170-180.
  125. Pang Xiao-feng, Yu Jia-feng, Liu Mei-jie. Molecular Physics. 2010; 108: 1297-1315.
  126. Fohlich H. Adv Electron Electron Phys. 1980; 53; 86.
  127. Spatschek KH, Mertens FG. Nonlinear coherent structures in physics and Biology. Plenum Press. 1994.
  128. Popp FA, Li KH, Gu Q. Recent advances in biophoton research and its application. World Scientific. 1993; 141.
  129. Mae Wan Ho, Popp FA, Warnke U. Bioelectrodynamics and Biocommunication. Would Scientific. 1994; 87.
  130. Pang Xiao-feng. soliton physics; Chinese Sichuan Science and Technology Press. Chengdu. 2000; P2-180.
  131. Guo Bai-lin, Pang Xiao-feng. Solitons, Chinese Science Press. Beijing. 1987; P4-38. 340.
  132. Bullough PK, Caudrey PJ. Sliton Spinger. 1982; P80-160.
  133. Young E, Shaw PB, Whitfield G. Phys Rev B. 1979; 19: 1225.
  134. Venzl G, Fischer SF. J Phys Chem. 1984; 81: 6090.
  135. Nagle JF, Mille M, Morowitz HJ. Chem J Phys. 1980; 72: 3959.
  136. Wanger M, Kongeter A. Chem J Phys. 1989; 91: 3036.
  137. Eremko AA, Yu Gaididei B, Vakhnenko AA. Dissociation‐Accompanied Raman Scattering by Davydov Solitons. Phys Stat Sol B. 1985; 127: 703-713. Ref.: https://goo.gl/dBchQX
  138. Careri GA, Gransanti, Ruple JA. Phys Rev A. 1998; 37: 2703.
  139. Careri G, Gratton E, Shyamsunder E. Phys Rev A. 1998; 37: 4048.
  140. Careri G, Buontempo U, Galluzzi F, Scott AC, Gratton Eet al. Spectroscopic evidence for Davydov-like solitons in acetanilide. Phys Rev B. 1984; 30: 4689. Ref.: https://goo.gl/CMF1ao
  141. Careri G, Buonttempo U, Caeta F, Scott AC. Phys Rev Lett. 1983; 51: 304.
  142. Scott AC. Physica D. 1990; 51: 333.
  143. Scott AC. Phys Lett A. 1998; 86: 603.
  144. MacNeil L, Scott AC. Phys Scr. 1984; 22: 842-879.
  145. Kerr WC, Lomdahl PS. Quantum mechanical derivation of the equation of motion for Davydov equarions for muilti-quanta states, in Davydov’s solitons revisited, eds. Christiansen PS, Scott AC. Plenum. 1990; 23-30.
  146. Rupley LA, Nicholls A. Phys Rev Lett. 1990; 64: 1174-1177.
  147. Stiefel J. Einfuhrung in die Numerische Mathematik Teubner Verlag. Stuttgart. 1965; 76-123.
  148. Atkinson KE. An Introduction to Numerical Analysis. Wiley. 1987; 47-186.
  149. Forner W. J Phys Condens Matter. 1993; 5: 805-823.
  150. Forner W, Ladik J. influence of heat bath and disorder on Davydov solitons, in Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Proteins, ed by Christiansen PL and Scott AC. Plenum. 1991; 267-284.
  151. Forner W. Davydov soliton dynamics: two-quantum states and diagonal disorder. J Phys Condens Matter. 1991; 3: 3235. Ref.: https://goo.gl/NNPzJc
  152. HofmannD, Forner W, Ladik J. J Phys Condensed Matter. 1990; 2: 4081.
  153. Davydov AS. Sov Phys JETP. 1980; 51: 397-400.
  154. Cruzeiro L, Halding J, Christiansen PL, Skovgaard G, Scott AS. Phys Rev A. 1988; 37: 880-887.
  155. Kenkre VM, Raghavan S, Cruzeiro-Hansson L. Thermal Stability of Extended Nonlinear Structures Related to the Davydov Solito. Phys Rev B. 1994; 49: 9511-9522. Ref.: https://goo.gl/rkkyRY
  156. Bolterauer H. Temperature effects on the Davydov soliton, in Self-trapping of vibrational energy, ed by Christiansen PL and Scott AC. Plenum Press. 1990; 309-323.
  157. Lawrence AF, McDanied JC, Chang DB, Birge RR. Biophys J. 1987; 51: 785-793.
  158. Lomdahl PS, Kerr WC. Davydov soliton at 300kelven: the final search, in Self-trapping of vibrational energy, ed by Christiansen PL and Scott AC. Plenum Press. 1990; 259-265.