Research Article

Silent cerebrovascular disease in hypertensive adults is frequent and age-dependent

Marta Brown-Martínez*, Zenaida Hernández, Yamile Valdés, Edilberto González, Emelina Despaigne and Evelio Gonzalez

Published: 08/13/2020 | Volume 4 - Issue 1 | Pages: 001-008

Abstract

Background: Cerebral small vessel disease and extracranial atherosclerotic carotid disease are manifestations of silent cerebrovascular disease (CVD). Information on these two pathologies in hypertensive population with low cardiovascular risk (CVR) is scarce.

Objective: To explore frequency and characteristics of silent CVD in hypertensive adults and cognitive repercussion of these alterations.
Methods: 39 hypertensive patients (mean age: 53.5 years) were studied. Cerebral magnetic resonance imaging (3T), doppler ultrasound of the carotid artery and neuropsychological studies were obtained.

Results: 79% of patients presented white matter lesions (WML), 18% showed only cerebral atrophy and/or enlarged perivascular spaces, 60% presented hyperplasia of intimal media complex (IMC) and/or atheroma plaques. In women, a significant correlation was observed between IMC thickness and bifrontal index, and WML was greater in patients with carotid plaques. A non-significant decrease in neuropsychological performance was observed in the groups of patients with intra and/or extracerebral injury and a negative correlation with the bifrontal index in men was found.

Conclusion: Frequency of intra and extracerebral silent CVD was high in hypertensive adults with low to moderate CVR. WML and brain atrophy were partially related with carotid lesions. Age significantly influenced the appearance of intra and extracerebral lesions. Cognitive performance did not decrease significantly due to the presence of these lesions.c

Read Full Article HTML DOI: 10.29328/journal.ach.1001021 Cite this Article

References

  1. Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, et al. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18: 439-458. PubMed: https://pubmed.ncbi.nlm.nih.gov/30871944/
  2. Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M, et al. Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017; 48: e44-e71. PubMed: https://pubmed.ncbi.nlm.nih.gov/27980126/
  3. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; 9: 689-701. PubMed: https://pubmed.ncbi.nlm.nih.gov/20610345/
  4. Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, et al. 2011ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease. Circulation. 2011; 124: e54-e130. PubMed: https://pubmed.ncbi.nlm.nih.gov/21282505/
  5. Amato M, Veglia F, de Faire U, Giral P, Rauramaa R, et al. Carotid plaque-thickness and common carotid IMT show additive value in cardiovascular risk prediction and reclassification. Atherosclerosis. 2017; 263: 412-419. PubMed: https://pubmed.ncbi.nlm.nih.gov/28602434/
  6. Knight-Greenfield A, Quitlong Nario JJ, Vora A, Baradaran H, Merkler A,
  7. et al. Associations Between Features of Nonstenosing Carotid Plaque on Computed Tomographic Angiography and Ischemic Stroke Subtypes. JAHA. 2019; 8: e014818. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951053/
  8. Loizou CP, Kyriacou E. Ultrasound Asymptomatic Carotid Plaque Image Analysis for the Prediction of the Risk of Stroke. In: Golemati S, Nikita KS, editors. Cardiovascular Computing Methodologies and Clinical Applications. Singapore: Springer Singapore. 2019; 317-329.
  9. Masson W, Huerin M, Vitagliano L, Zeballos C, Lobo M, et al. Estimation of Cardiovascular Risk and Detection of Subclinical Carotid Atheromatosis in Middle-aged Postmenopausal Women. Arg J Cardiol. 2013; 81: 322-328.
  10. Perez HA, Garcia NH, Spence JD, Armando LJ. Adding carotid total plaque area to the Framingham risk score improves cardiovascular risk classification. Arch Med Sci. 2016; 2016: 513-520. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889685/
  11. Chambless LE, Heiss G, Shahar E, Earp MJ, Toole J. Prediction of Ischemic Stroke Risk in the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2004; 160: 259-269. PubMed: https://pubmed.ncbi.nlm.nih.gov/15257999
  12. Xie W, Wu Y, Wang W, Zhao D, Liang L, et al. A Longitudinal Study of Carotid Plaque and Risk of Ischemic Cardiovascular Disease in the Chinese Population. J Am Soc Echocardiogr. 2011; 24: 729-737. PubMed: https://pubmed.ncbi.nlm.nih.gov/21440416/
  13. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; 12: 822-838. PubMed: https://pubmed.ncbi.nlm.nih.gov/23867200/
  14. Frisoni GB, Beltramello A, Weiss C, Geroldi C, Bianchetti A, et al. Linear measures of atrophy in mild Alzheimer disease. Am J Neuroradiol. 1996; 17: 913-923. PubMed: https://pubmed.ncbi.nlm.nih.gov/8733967/
  15. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, et al. Mannheim Carotid Intima-Media Thickness Consensus (2004-2006). Cerebrovas Dis. 2007; 23: 75-80. PubMed: https://pubmed.ncbi.nlm.nih.gov/17108679/
  16. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards. Stroke. 2006; 37: 2220-2241. PubMed: https://pubmed.ncbi.nlm.nih.gov/16917086
  17. Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of Cerebral Small Vessel Disease and Age-Related Cognitive Changes. Front Aging Neurosci. 2019; 11: 145. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610261/
  18. Consoli D, Di CA, Inzitari D, De LD, Lamassa M, et al. Subcortical ischaemic changes in young hypertensive patients: frequency, effect on cognitive performance and relationship with markers of endothelial and haemostatic activation. Eur J Neurol. 2007; 14: 1222-1229.
  19. Meissner A. Hypertension and the Brain: A Risk Factor for More Than Heart Disease. Cerebrovasc Dis. 2016; 42: 255-262.
  20. Uiterwijk R, Huijts M, Staals J, Rouhl RPW, De Leeuw PW, et al. Endothelial Activation Is Associated With Cognitive Performance in Patients With Hypertension. Am J Hypertens. 2015; 29: 464-469. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886483/
  21. Wang T, Li Y, Guo X, Huang D, Ma L, et al. Reduced perfusion in normal-appearing white matter in mild to moderate hypertension as revealed by 3D pseudocontinuous arterial spin labeling. J Magn Reson Imaging. 2016; 43: 635-643. PubMed: https://pubmed.ncbi.nlm.nih.gov/26256700/
  22. Kloppenborg RP. 7 Tesla MRI for visualisation of small cerebral vessels. Ned Tijdschr Geneeskd. 2017; 161: D552. PubMed: https://pubmed.ncbi.nlm.nih.gov/28537536/
  23. Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018; 14: 387-398. PubMed: https://pubmed.ncbi.nlm.nih.gov/29802354
  24. Hurford R, Charidimou A, Fox Z, Cipolotti L, Jager R, et al. MRI-visible perivascular spaces: relationship to cognition and small vessel disease MRI markers in ischaemic stroke and TIA. J Neurol Neurosurg Psychiatry. 2014; 85: 522-525. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995332/
  25. Kim BJ, Lee SH. Cerebral microbleeds: their associated factors, radiologic findings, and clinical implications. J Stroke. 2013; 15: 153-163. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859003/
  26. Zhan C, Shi M, Yang Y, Pang H, Fei S, et al. Prevalence and Risk Factors of Carotid Plaque Among Middle-aged and Elderly Adults in Rural Tianjin, China. Sci Rep. 2016; 6: 23870. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814923/
  27. Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, Ibañez B, López-Melgar B, et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort. Circulation. 2015; 131: 2104-2113. PubMed: https://pubmed.ncbi.nlm.nih.gov/25882487/
  28. Varleta P, Concepcion R, Julio P, Casanova H, Navarrete C. Ateroesclerosis subclinica en poblacion de riesgo cardiovascular bajo y moderado por Framingham chileno. Revista medica de Chile. 2016; 144: 30-38.
  29. Finn C, Giambrone AE, Gialdini G, Delgado D, Baradaran H, et al. The Association between Carotid Artery Atherosclerosis and Silent Brain Infarction: A Systematic Review and Meta-analysis. J Stroke Cerebrovasc Dis. 2017; 26: 1594-1601. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474126/
  30. Moroni F, Ammirati E, Magnoni M, D’Ascenzo F, Anselmino M, et al. Carotid atherosclerosis, silent ischemic brain damage and brain atrophy: A systematic review and meta-analysis. Int J Cardiol. 2016; 223: 681-687. PubMed: https://pubmed.ncbi.nlm.nih.gov/27568989/
  31. Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015; 65: 1065-1074. PubMed: https://pubmed.ncbi.nlm.nih.gov/25790876/
  32. Wahlund LO, Erkinjuntti T, Gauthier S, editor. Vascular Cognitive Impairment in Clinical Practice. New York: Cambridge University Press; 2009.
  33. Kail R, Salthouse TA. Processing speed as a mental capacity. Acta Psychol. 1994; 86: 199-225. PubMed: https://pubmed.ncbi.nlm.nih.gov/7976467/
  34. Neubauer A, Fink A. Intelligence and neural efficiency. Neurosci Biobeh Rev. 2009; 33: 1004-1023. PubMed: https://pubmed.ncbi.nlm.nih.gov/19580915/
  35. Penke L, Muñoz Maniega S, Bastin ME, Hernandez M, Murray C, et al. Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatr. 2012; 17: 1026-1030.
  36. Turken U, Whitfield-Gabrieli SL, Bammer R, Baldo JV, Dronkers NF, et al. Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. NeuroImage. 2008; 42: 1032-1044. PubMed: https://pubmed.ncbi.nlm.nih.gov/18602840/