Research Article

Venomics and antivenomics data: Current and future perspective

Soodeh Omidi, Masoumeh Mehrpouya, Morteza Oladnabi*, Abbas Azadmehr, Fatemeh Kazemi-Lomedasht and Najmeh Yardehnavi*

Published: 04/20/2021 | Volume 5 - Issue 1 | Pages: 026-031

Abstract

Venom has a very complex and exclusive nature which has been introduced by recent advances in omics technologists. These methods have revealed a new insight into venom studies as venomics. Envenoming by venomous animals is a global concern due to the distribution of important medical species around the world. Treatment of envenomed victims is dependent on accurate and fast identification of animal species with different detection methods. In recent years, new methods have been introduced based on molecular and immunological techniques. Precise diagnosis of species of venomous animals is an essential factor for treatment with specific antivenoms. Venomics and antivenomics data sets help in the selection of specific antivenoms or production of novel antivenoms with greater efficacies.

Read Full Article HTML DOI: 10.29328/journal.abb.1001025 Cite this Article

References

  1. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BGJT, et al. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013; 28: 219-229. PubMed: https://pubmed.ncbi.nlm.nih.gov/23219381/
  2. Jiang Y, Li Y, Lee W, Xu X, Zhang Y, et al. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC Genomics. 2011; 12: 1. PubMed: https://pubmed.ncbi.nlm.nih.gov/21194499/
  3. Kordiš D, Gubenšek FJG. Adaptive evolution of animal toxin multigene families. Gene. 2000; 261: 43-52. PubMed: https://pubmed.ncbi.nlm.nih.gov/11164036/
  4. Aird SD, Arora J, Barua A, Qiu L, Terada K, et al. Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol Evol. 2017; 9: 2640-2649. PubMed: https://pubmed.ncbi.nlm.nih.gov/29048530/
  5. Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu. 2015; 36: 183-122. PubMed: https://pubmed.ncbi.nlm.nih.gov/26228472/
  6. Brahma RK, McCleary RJ, Kini RM, Doley RJT. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon. 2015; 93: 1-10. PubMed: https://pubmed.ncbi.nlm.nih.gov/25448392/
  7. Jahdasani R, Jamnani FR, Behdani M, Habibi-Anbouhi M, Yardehnavi N, et al. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library. Toxicon. 2016; 124; 83-93. PubMed: https://pubmed.ncbi.nlm.nih.gov/27845058/
  8. Kazemi-Lomedasht F, Khalaj V, Bagheri KP, Behdani M, Shahbazzadeh D. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon. 2017; 125: 123-130. PubMed: https://pubmed.ncbi.nlm.nih.gov/27914888/
  9. Klupczynska A, Pawlak M, Kokot Z, Matysiak JJT. Application of metabolomic tools for studying low molecular-weight fraction of animal venoms and poisons. Toxins (Basel). 2018; 10: 306. PubMed: https://pubmed.ncbi.nlm.nih.gov/30042318/
  10. Leonardi A, Biass D, Kordiš D, Stöcklin R, Favreau P, et al. Conus consors snail venom proteomics proposes functions, pathways, and novel families involved in its venomic system. J Proteome Res. 2012; 11: 5046-5058.                         PubMed: https://pubmed.ncbi.nlm.nih.gov/22928724/
  11. Park D, Jung JW, Choi BS, Jayakodi M, Lee J, et al. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics. 2015; 16: 1. PubMed: https://pubmed.ncbi.nlm.nih.gov/25553907/
  12. Torabi E, Asgari S, Khalaj V, Behdani M, Kazemi-Lomedasht F, et al. Corrigendum to" The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus Toxicon. 125. (2017) 123-130]. Toxicon. 2017; 128: 60. PubMed: https://pubmed.ncbi.nlm.nih.gov/28192687/
  13. Tasoulis T, Isbister GK. A review and database of snake venom proteomes. Toxins (Basel). 2017; 9: 290. PubMed: https://pubmed.ncbi.nlm.nih.gov/28927001/
  14. Abdel-Rahman MA, Omran MA, Abdel-Nabi IM, Ueda H, McVean AJ. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon. 2009; 53: 349-359. PubMed: https://pubmed.ncbi.nlm.nih.gov/19103215/
  15. Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, et al. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics. 2010; 11: 452. PubMed: https://pubmed.ncbi.nlm.nih.gov/20663230/
  16. He Y, Zhao R, Di Z, Li Z, Xu X, et al. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics. 2013; 89: 1-14. PubMed: https://pubmed.ncbi.nlm.nih.gov/23774330/
  17. Ma Y, He Y, Zhao R, Wu Y, Li W, et al. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012; 75: 1563-1576.  PubMed: https://pubmed.ncbi.nlm.nih.gov/22155128/
  18. Ma J, Shi YB. The Mesobuthus martensii genome reveals the molecular diversity of scorpion toxins. Cell Biosci. 2014; 4: 1. PubMed: https://pubmed.ncbi.nlm.nih.gov/24383941/
  19. Ma Y, Zhao Y, Zhao R, Zhang W, He Y, et al. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics. 2010; 10: 2471-2485. PubMed: https://pubmed.ncbi.nlm.nih.gov/20443192/
  20. Rendón-Anaya M, Delaye L, Possani LD, Herrera-Estrella AJ. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012; 7: e43331. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422302/
  21. Romero-Gutiérrez M, Santibáñez-López C, Jiménez-Vargas J, Batista C, Ortiz E, et al. Transcriptomic and proteomic analyses reveal the diversity of venom components from the vaejovid scorpion Serradigitus gertschi. Toxins (Basel). 2018; 10: 359. PubMed: https://pubmed.ncbi.nlm.nih.gov/30189638/
  22. Xu X, Duan Z, Di Z, He Y, Li J, et al. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. J Proteomics. 2014; 106: 162-180. PubMed: https://pubmed.ncbi.nlm.nih.gov/24780724/
  23. Al-Asmari AK, Kunnathodi F, Al Saadon K, Idris MM. Elemental analysis of scorpion venoms. J Venom Res. 2016; 7: 16-20. PubMed: https://pubmed.ncbi.nlm.nih.gov/27826410/
  24. Himaya S, Lewis RJI. Venomics-accelerated cone snail venom peptide discovery. Int J Mol Sci. 2018; 19: 788. PubMed: https://pubmed.ncbi.nlm.nih.gov/29522462/
  25. Tayo LL, Lu B, Cruz LJ, Yates III JR. Proteomic analysis provides insights on venom processing in Conus textile. J Proteome Res. 2010; 9: 2292-2301. PubMed: https://pubmed.ncbi.nlm.nih.gov/20334424/
  26. Dutt M, Dutertre S, Jin AH, Lavergne V, Alewood PF, et al. Venomics reveals venom complexity of the piscivorous cone snail, Conus tulipa. Mar Drugs. 2019; 17: 71. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356538/
  27. Jin AH, Dutertre S, Dutt M, Lavergne V, Jones A, et al. Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Mar Drugs. 2019; 17: 177. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471084/
  28. Safavi-Hemami H, Hu H, Gorasia DG, Bandyopadhyay PK, Veith PD, et al. Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization. Mol Cell Proteomics. 2014; 13: 938-953. PubMed: https://pubmed.ncbi.nlm.nih.gov/24478445/
  29. Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genomics. 2016; 17: 401.  PubMed: https://pubmed.ncbi.nlm.nih.gov/27229931/
  30. Dutertre S, Jin AH, Alewood PF, Lewis RJ. Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon. 2014; 91: 135-144. PubMed: https://pubmed.ncbi.nlm.nih.gov/25301479/
  31. Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, et al. Evolution of separate predation-and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014; 5: 3521. PubMed: https://pubmed.ncbi.nlm.nih.gov/24662800/
  32. Lomazi RL, Nishiduka ES, Silva PI, Tashima AK. Identification of Peptides in Spider Venom Using Mass Spectrometry Peptidomics. methods mol boil. 2018; 359-367. PubMed: https://pubmed.ncbi.nlm.nih.gov/29476524/
  33. Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama Jr, MY, Mudadu MA, et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One. 2018; 13: e0200628. PubMed: https://pubmed.ncbi.nlm.nih.gov/30067761/
  34. He Q, Duan Z, Yu Y, Liu Z, Liu Z, et al. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS One. 2013; 8: e81357. PubMed: https://pubmed.ncbi.nlm.nih.gov/24312294/
  35. Oldrati V, Koua D, Allard PM, Hulo N, Arrell M, et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS One. 2017; 12: e0172966. PubMed: https://pubmed.ncbi.nlm.nih.gov/28306751/
  36. Santana R, Perez D, Dobson J, Panagides N, Raven R, et al. Venom profiling of a population of the theraphosid spider phlogius crassipes reveals continuous ontogenetic changes from juveniles through adulthood. Toxins (Basel). 2017; 9: 116. PubMed: https://pubmed.ncbi.nlm.nih.gov/28346332/
  37. Zancolli G, Sanz L, Calvete J, Wüster W. Venom on-a-chip: a fast and efficient method for comparative venomics. Toxins (Basel). 2017; 9: 179. PubMed: https://pubmed.ncbi.nlm.nih.gov/28555029/
  38. Carregari VC, Rosa-Fernandes L, Baldasso P, Bydlowski SP, Marangoni S, et al. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Sci Rep. 2018; 8: 12067. PubMed: https://pubmed.ncbi.nlm.nih.gov/30104604/
  39. de Oliveira UC, Nishiyama Jr, MY, dos Santos MBV, de Paula Santos-da-Silva A, de Menezes Chalkidis H, et al. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018; 13: e0193739. PubMed: https://pubmed.ncbi.nlm.nih.gov/29561852/
  40. Ranawaka UK, Lalloo DG, de Silva HJ. Neurotoxicity in snakebite—the limits of our knowledge. PLoS Negl Trop Dis. 2013; 7: e2302. PubMed: https://pubmed.ncbi.nlm.nih.gov/24130909/
  41. Theakston RGD, Laing GD. Diagnosis of snakebite and the importance of immunological tests in venom research. 2014; 6: 1667-1695. PubMed: https://pubmed.ncbi.nlm.nih.gov/24859244/
  42. Suntrarachun S, Pakmanee N, Tirawatnapong T, Chanhome L, Sitprija VJT. Development of a polymerase chain reaction to distinguish monocellate cobra (Naja khouthia) bites from other common Thai snake species, using both venom extracts and bite-site swabs. Toxicon. 2001; 39: 1087-1090. PubMed: https://pubmed.ncbi.nlm.nih.gov/11223099/
  43. Selvanayagam ZE, Gopalakrishnakone P. Tests for detection of snake venoms, toxins and venom antibodies: review on recent trends (1987–1997). Toxicon. 1999; 37: 565-586. PubMed: https://pubmed.ncbi.nlm.nih.gov/10082159/
  44. Minton SA. Present tests for detection of snake venom: clinical applications. Ann Emerg Med. 1987; 16: 932-937. PubMed: https://pubmed.ncbi.nlm.nih.gov/3307554/
  45. Chandler HM, Hurrell JG. A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit. Clin Chim Acta. 1982; 121: 225-230. PubMed: https://pubmed.ncbi.nlm.nih.gov/7046996/
  46. Trevett A, Lalloo D, Nwokolo N, Theakston R, Naraqi S, et al. Venom detection kits in the management of snakebite in Central province, Papua New Guinea. Toxicon. 1995; 33: 703-705. PubMed: https://pubmed.ncbi.nlm.nih.gov/7660375/
  47. Eng KH, Gopalakrishnakone PJ. Immunogenicity of venoms from four common snakes in the South of Vietnam and development of ELISA kit for venom detection. J Immunol Methods. 2003; 282: 13-31. PubMed: https://pubmed.ncbi.nlm.nih.gov/14604537/
  48. Ibrahim NM, Saleh NS, Aati AMA, El-kady EMJ. Detection of venoms from Egyptian elapids in experimentally envenomed mice. 2014; 6.
  49. Eng KH, Gopalakrishnakone PJ. Bioelectronics. Optical immunoassay for snake venom detection. 2004; 19: 1285-1294. Biosens Bioelectron. PubMed: https://pubmed.ncbi.nlm.nih.gov/15046761/
  50. Choudhury SN, Konwar B, Kaur S, Doley R, Mondal BJ. Study on snake venom protein-antibody interaction by surface plasmon resonance spectroscopy. 2018; 8: 193-202.
  51. Teja GKA, More N, Kapusetti GJ, Medicine H. Advanced Biosensor-based Strategy for Specific and Rapid Detection of Snake Venom for Better Treatment. 2018; 3: 61-67.
  52. Pook C, McEwing R. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Toxicon. 2005; 46: 711-715. PubMed: https://pubmed.ncbi.nlm.nih.gov/16157361/
  53. Supikamolseni A, Ngaoburanawit N, Sumontha M, Chanhome L, Suntrarachun S, et al. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand. Genet Mol Res. 2015; 14: 13981-13997. PubMed: https://pubmed.ncbi.nlm.nih.gov/26535713/
  54. Sharma SK, Kuch U, Höde P, Bruhse L, Pandey DP, et al. Use of molecular diagnostic tools for the identification of species responsible for snakebite in Nepal: a pilot study. PLoS Negl Trop Dis. 2016; 10: e0004620. PubMed: https://pubmed.ncbi.nlm.nih.gov/27105074/
  55. Schaffrath S, Predel RJ. A simple protocol for venom peptide barcoding in scorpions. 2014; 3: 239-245.
  56. Calvete JJ, Gutiérrez JM, Sanz L, Pla D, Lomonte BJ. Antivenomics: A Proteomics Tool for Studying the Immunoreactivity of Antivenoms. 2015.
  57. Ledsgaard L, Jenkins T, Davidsen K, Krause K, Martos-Esteban A, et al. Antibody Cross-Reactivity in Antivenom Research. Toxins (Basel). 2018; 10: 393. PubMed: https://pubmed.ncbi.nlm.nih.gov/30261694/
  58. Tan CH, Tan KY, Ng TS, Quah ES, Ismail AK, et al. Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands pit viper from Malaysia: Insights into venom proteome, toxicity and neutralization of antivenom. Toxins (Basel). 2019; 11: 95. PubMed: https://pubmed.ncbi.nlm.nih.gov/30736335/
  59. Patra A, Kalita B, Chanda A, Mukherjee AK. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep. 2017; 7: 17119.                     PubMed: https://pubmed.ncbi.nlm.nih.gov/29215036/
  60. Tan KY, Tan NH, Tan CH. Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia siamensis from Guangxi and Taiwan. Sci Rep. 2018; 8: 8545. PubMed:https://pubmed.ncbi.nlm.nih.gov/29867131/
  61. Gutiérrez J, Solano G, Pla D, Herrera M, Segura Á, et al. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins (Basel). 2017; 9: 163. PubMed: https://pubmed.ncbi.nlm.nih.gov/28505100/
  62. Teixeira-Araújo R, Castanheira P, Brazil-Más L, Pontes F, de Araújo ML, et al. Antivenomics as a tool to improve the neutralizing capacity of the crotalic antivenom: a study with crotamine. J Venom Anim Toxins Incl Trop Dis. 2017; 23: 28. PubMed: https://pubmed.ncbi.nlm.nih.gov/28507562/
  63. Knudsen C, Laustsen AJT. Recent advances in next generation snakebite antivenoms. Trop Med Infect Dis. 2018; 3: 42. PubMed: https://pubmed.ncbi.nlm.nih.gov/30274438/
  64. Laustsen AH. Guiding recombinant antivenom development by omics technologies. N Biotechnol. 2018; 45: 19-27. PubMed: https://pubmed.ncbi.nlm.nih.gov/28552814/