Research Article

ABC and MFS Transporters: A reason for Antifungal drug resistance

Neelabh* and Karuna Singh

Published: 01/05/2018 | Volume 2 - Issue 1 | Pages: 001-007

Abstract

Fungi cause a variety of diseases and are difficult to treat owing to their eukaryotic nature resulting in dearth of antifungal targets at hand. This problem is further elevated many folds due to the resistance mechanisms of fungi through which they circumvent the antifungal drugs administered for therapeutic purposes. Fungi have a variety of strategies for obtaining these resistances, amongst them pivotal role is played by the ABC and MFS transporters. This article encompasses the important genes and their respective roles of both the classes of the transporters in different species of fungi.

Read Full Article HTML DOI: 10.29328/journal.abb.1001009 Cite this Article

References

  1. Pianalto KM, Alspaugh JA. New Horizons in antifungal therapy. J Fungi. 2016; 4: 26. Ref.: https://goo.gl/Ay5dYZ
  2. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012; 165: 165. Ref.: https://goo.gl/33Aymv   
  3. Chu DT, Plattner JJ, Katz L. New directions in antibacterial research. J Med Chem. 1996; 39: 3853-3874. Ref.: https://goo.gl/VCmMK4  
  4. Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002; 359: 1135-1144. Ref.: https://goo.gl/439pW7b  
  5. Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 2009; 9: 1029-1050. Ref.: https://goo.gl/zEHzqX  
  6. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009; 22: 291-321. Ref.: https://goo.gl/FFooGK  
  7. Bauer BE, Wolfger H, Kuchler K. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta. 1999; 1461: 217-236. Ref.: https://goo.gl/go9UVs  
  8. Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins. Nat Genet. 1997; 15: 137-145. Ref.: https://goo.gl/xcUV5X  
  9. Sipos G, Kuchler K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr Drug Targets. 2006; 7: 471-481. Ref.: https://goo.gl/4A6ijR  
  10. Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem. 1994; 269: 2206-2214. Ref.: https://goo.gl/U3bTgk
  11. Bissinger PH, Kuchler K. Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem. 1994; 269:  4180-4186. Ref.: https://goo.gl/iz8FPk  
  12. Hirata D, Yano K, Miyahara K, Miyakawa T. Saccharomyces cerevisiae YDR1, which encodes a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance. Curr Genet. 1994; 26: 285-294. Ref.: https://goo.gl/wHgpxt  
  13. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995; 39: 2378-2386. Ref.: https://goo.gl/NEkJb6  
  14. Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother. 1996; 40: 2300-2305. Ref.: https://goo.gl/mNijQx  
  15. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997: 143: 405-416. Ref.: https://goo.gl/LWV1ux  
  16. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997; 41: 1482-1487. Ref.: https://goo.gl/qJpXFb  
  17. White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2002; 46: 1704-1713. Ref.: https://goo.gl/4YHXtY  
  18. Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002; 49: 973-980. Ref.: https://goo.gl/FBHFNd  
  19. Balan I, Alarco AM, Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. Journal of bacteriology. 1997: 179. 7210-7218. Ref.: https://goo.gl/gfpPgY  
  20. Franz R, Michel S, Morschhäuser J. A fourth gene from the Candida albicans CDR family of ABC transporters. Gene. 1998; 220: 91-98. Ref.: https://goo.gl/oDtXD3
  21. Cui Z, Hirata D, Miyakawa T. Functional analysis of the promoter of the yeast SNQ2 gene encoding a multidrug resistance transporter that confers the resistance to 4-nitroquinoline N-oxide. Biosci Biotechnol Biochem. 1999; 1: 162-167. Ref.: https://goo.gl/GMGyVG
  22. Oliveira K, Haase G, Kurtzman C, Jo J, Stender H. Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol. 2001; 11: 4138-4141. Ref.: https://goo.gl/wSd1Tk
  23. Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole. Antimicrob Agents Chemother. 2005; 2: 783-787. Ref.: https://goo.gl/J9CgcQ
  24. Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, et al. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005; 2: 668-679. Ref.: https://goo.gl/yHRQdL
  25. Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C, et al. Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob Agents Chemother. 1998; 7: 1695-1701. Ref.: https://goo.gl/cWM5wU
  26. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter GeneCgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999; 11: 2753-2765. Ref.: https://goo.gl/bti7d3
  27. Nakayama H, Izuta M, Nakayama N, Arisawa M, Aoki Y. Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice. Antimicrob Agents Chemother. 2000; 9: 2411-2418. Ref.: https://goo.gl/wJERXi
  28. Fukuoka T, Johnston DA, Winslow CA, de Groot MJ, Burt C, et al. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother. 2003; 4: 1213-1219. Ref.: https://goo.gl/6DGpJh
  29. Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, et al. Mechanism of Fluconazole Resistance in Candida krusei. Antimicrob Agents Chemother. 1998; 10: 2645-2649. Ref.: https://goo.gl/aNv2HZ
  30. Venkateswarlu K, Denning DW, Kelly SL. Inhibition and interaction of cytochrome P450 of Candida krusei with azole antifungal drugs. J Med Vet Mycol. 1997; 1: 19-25. Ref.: https://goo.gl/n36Rwe
  31. Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, et al. Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother. 1998; 7: 1819-1830. Ref.: https://goo.gl/Mf42BU
  32. Barchiesi F, Calabrese D, Sanglard D, Di Francesco LF, Caselli F, et al. Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrob Agents Chemother. 2000; 6: 1578-1584. Ref.: https://goo.gl/dpRzv1
  33. Katiyar SK, Edlind TD. Identification and expression of multidrug resistancerelated ABC transporter genes in Candida krusei. Med Mycol. 2001; 1: 109-116. Ref.: https://goo.gl/fsrs5z
  34. Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol. 2002; 3: 199-206. Ref.: https://goo.gl/Lt1m6A
  35. Tekaia F, Latgé JP. Aspergillus fumigatus: saprophyte or pathogen?. Current opinion in Microbiology. 2005; 4: 385-392. Ref.: https://goo.gl/rrDhR1
  36. Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog. 2007; 3: 24. Ref.: https://goo.gl/wk5Asm
  37. Andrade AC, Del Sorbo G, Van Nistelrooy JG, De Waard MA. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology. 2000; 8: 1987-1997. Ref.: https://goo.gl/9KKDbR
  38. Andrade AC, Van Nistelrooy JGM, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet. 2000; 6: 966-977. Ref.: https://goo.gl/SiYTHx
  39. Angermayr K, Parson W, Stöffler G, Haas H. Expression of atrC-encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans-is sensitive to cycloheximide. Biochim Biophys Acta. 1999; 2: 304-310. Ref.: https://goo.gl/omCCgD
  40. Del Sorbo G, Andrade AC, Van Nistelrooy JGM, Van Kan JAL, Balzi E, et al. Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet. 1997; 4: 417-426. Ref.: https://goo.gl/L8y1jg
  41. Posteraro B, Sanguinetti M, Sanglard D, La Sorda M, Boccia S, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter‐encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol. 2003; 2: 357-371. Ref.: https://goo.gl/XtZ598
  42. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006; 2: 1352-1359. Ref.: https://goo.gl/VJYGGv
  43. Thornewell SJ, Peery RB, Skatrud PL. Cloning and characterization of CneMDR1: a Cryptococcus neoformans gene encoding a protein related to multidrug resistance proteins. Gene. 1997; 1: 21-29. Ref.: https://goo.gl/qsedCC
  44. Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG, Kelly SL. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother. 1997; 4: 748-751. Ref.: https://goo.gl/PnUwMR
  45. Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res. 2006; 3: 345-355. Ref.: https://goo.gl/sbwmT6
  46. Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, et al. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell. 2007; 7: 1150-1165. Ref.: https://goo.gl/Ts2gMZ
  47. Pasrija R, Banerjee D, Prasad R. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell. 2007; 3: 443-453. Ref.: https://goo.gl/TfvHHj
  48. Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology. 2000; 11: 2743-2754. Ref.: https://goo.gl/7rQfQY