Research Article

Concise Review: Considerations for the Formulation, Delivery and Administration Routes of Biopharmaceuticals

Amir Mohammed Alsharabasy*

Published: 06/28/2017 | Volume 1 - Issue 1 | Pages: 033-053


The drugs of biological origins have attracted the attention of many pharmaceutical companies where it is essential to protect the heterogeneous nature and the optimal three dimensional structures of the different macromolecules. These molecules are used in both the investigation and therapy purposes, so their maximum activities should be maintained. This requires the designing of certain delivery formulations that suits the macromolecule nature, its target organ, the required dose and delivery route, and that’s why the biotech companies invest millions of dollars towards achieving that. The first main focal point of this article includes the recent developments in the formulation technologies for several biomacromolecule classes. The second focal point concentrates on the current considerations for optimizing their delivery for a maximum performance in the body.

Read Full Article HTML DOI: 10.29328/journal.hjb.1001004 Cite this Article


  1. Rader RA. BioExecutive Intl. 2005; 60-65.
  2. Rader RA. Biopharmaceutical Products in the US and European Markets. 6th ed., 2007; 2. Ref.:
  3. Rader RA. (Re) defining biopharmaceutical. Nature Biotechnol. 2008; 26: 743-751. Ref.:
  4. Walsh G. Biopharmaceuticals biochemistry and biotechnology, 2nd Edition. John Wiley & Sons, Ltd, Chichester, U.K. 2003.
  5. Ho RJ, Gibaldi M. Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs. 2nd Edition. John Wiley & Sons, Ltd, Chichester, U.K. 2013.
  6. Pharmaceutical Research and Manufacturers of America. Medicines in Development -Biologics (2013 report). PhRMA [online]. 2016.
  7. Pharmaceutical Research and Manufacturers of America. Medicines in Development-Biologics (2015 report). PhRMA [online]. 2016.  
  8. CSDD. Biotech products in big pharma clinical pipelines have grown dramatically. Tufts CSDD Impact Report. 2013; 15: 1-4.
  9. PhRMA ChartPack (2015). Biopharmaceuticals in Prospective. 2016.
  10. FDA. Guidance for Industry Contract Manufacturing Arrangements for Drugs: Quality Agreements. 2013.
  11. Guidance for Clinical Investigators, Sponsors, and IRBs Investigational New Drug Applications (INDs)-Determining Whether Human Research Studies Can Be Conducted Without an IND. 2013.
  12. National Patient Safety Agency: National Reporting and Learning Service (2010) Vaccine cold storage. 2016.
  13. Lokesh B, et al. Excipients: Background/Introduction”. In: Ashok K and Mahesh C (eds). Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems. Informa Healthcare, New York. 2006.
  14. Hassan BA. Overview on Pharmaceutical Formulation and Drug Design. Pharmaceut Anal Acta. 3:10. 2012.
  15. Venkatesh S, Lipper RA. Role of the development scientist in compound lead selection and optimization. J Pharm Sci. 2000; 89: 145-154. Ref.:
  16. Simler R, Walsh G, Mattaliano RJ, N Guziewicz, Perez-Ramirez B. Maximizing data collection and analysis during preformulation of biotherapeutic proteins. BioProcess Int. 2008; 4: 38-45.
  17. Li AP. A comprehensive approach for drug safety assessment. Chem Biol Interact. 2004; 150: 27-33. Ref.:
  18. Steele G, Austin T. Chapter (3): Preformulation Investigations using Small Amounts of Compound as an Aid to Candidate Drug Selection and Early Development. In: Gibson M. Pharmaceutical Preformulation and Formulation. Informa Healthcare. 2009; New York. 17-128.
  19. Wei Z, Emily Shacter, Mark Schenerman, John Dougherty, Lorna McLeod D. CMC Strategy Forum Report: The Role of Higher-Order Structure in Defining Biopharmaceutical Quality. BioProcess Int. 2011; 6: 54-65. Ref.:
  20. Shintani H. Development of test method for pharmaceutical and biopharmaceutical products. Pharm Anal Acta. 2013; 4: 1-14. Ref.:
  21. ICH Topic Q6B. Specifications: Test Procedures and Acceptance Criteria for Biotechnological/ Biological Products. CPMP/ICH/365/96. 1999.
  22. ICH Topic Q6A. Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances. CPMP/ICH/367/96. 2000.
  23. ICH papers: ICH topic Q5E. Harmonised tripartite guideline: comparability of biotechnological/ biological products subject to changes in their manufacturing process. 2004.
  24. Berkowitz SA, Engen JR, Jeffrey RM, Graham BJ. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov. 2012; 11: 527-40. Ref.:
  25. Wishart DS. Characterization of biopharmaceuticals by NMR spectroscopy. Trends Anal Chem. 2013; 48: 96-111. Ref.:
  26. Zuperl S, P Pristovšek, V Menart, Porekar GV, Novic M. Chemometric approach in quantification of structural identity/similarity of proteins in biopharmaceuticals. J Chem Inf Model. 2007; 47: 737-743. Ref.:
  27. Aubin Y, G Gingras, S Sauvé. Assessment of the three-dimensional structure of recombinant protein therapeutics by NMR fingerprinting: demonstration on recombinant human granulocyte macrophagecolony stimulation factor. Anal Chem. 2008; 80: 2623-2627. Ref.:
  28. Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem. 2008; 80: 8045-8054. Ref.:
  29. Nikolin B, Belma I, Medanhodzić-Vuk S, Soberet M.High perfomance liquid chromatography in pharmaceutical analyses. Bosn J Basic Med Sci. 2004; 4: 5-9. Ref.:
  30. Lim A, Barnes CS. Chapter 11: Utilization of Mass Spectrometry for the Structural Characterization of Biopharmaceutical Protein Products. In: Gross ML. et al (eds). Protein and peptide mass spectrometry in drug discovery. John Wiley & Sons, Inc.: New Jersy. 2012; 304.
  31. Higel F, Demelbauer U, Andreas S, Wolfgang F, Fritz S. Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem. 2013; 405: 2481-2493. Ref.:
  32. Rosenberg AS. Effects of Protein Aggregates: An Immunologic Perspective. AAPS J. 2006; 8: 501-507. Ref.:
  33. Lloyd L. Size-exclusion chromatography of protein aggregation in biopharmaceutical development and production. 2014; 32: 30-35.
  34. Engelsman J, Garidel P, Smulders R, Koll H, Smith B, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011; 28: 920-33. Ref.:
  35. McGrath BM. Chapter (11): Factor IX (Protease Zymogen). In: McGrath BM, Walsh G. Directory of therapeutic enzymes. CRC Press Taylor & Francis Group: New York. 2006; 225.
  36. Popovici ST, Kok WT, Schoenmakers PJ. Band broadening in size-exclusion chromatography of polydisperse samples. J Chromatogr A. 2004; 1060: 237-252. Ref.:
  37. Ziegler A, Zaia J. Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 837: 76-86. Ref.:
  38. Gritti F, Farkas T, Heng J, Guiochon G. On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: theory and practice. J Chromatogr A. 2011; 1218: 8209-8221. Ref.:
  39. Hong P, Koza S, Bouvier ES. Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Rel Technol. 2012; 35: 2923-2950. Ref.:
  40. Aitken A, Learmonth M. Protein Determination by uv Absorption. In: Walker JM (ed). The Protein Protocols Handbook. Humana Press: New Jersy. 1996; 3-6.
  41. Bond MD, Mark EP, Zhang Z, Wang D, Mehndiratta, et al. Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody. J Pharm Sci. 2010; 99: 2582-2597. Ref.:
  42. Kipouros K, Kachrimanis K, Nikolakakis I, Tserki V, Malamataris S. Simultaneous quantification of carbamazepine crystal forms in ternary mixtures (I, III, and IV) by diffuse reflectance FTIR spectroscopy (DRIFTS) and multivariate calibration. J Pharm Sci. 2006; 95: 2419-2431. Ref.:
  43. Li CH, Xichdao N, Linda N, Chemmalil L, Edward T. Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near-and far-UV CD for protein higher order structural analysis. J Pharm Sci. 2011; 100: 4642-4654. Ref.:
  44. Dalal S, Balasubramanian S, Lynne Regan. Transmuting α-helices and β-sheets. Folding Design. 1997; 2: 71-79. Ref.:
  45. Dong A, James M, Mark CM, John FC. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study. Arch Biochem Biophys. 1998; 355: 275-281. Ref.:
  46. Li G, Gianni T, Wendy J, Zai-qing W. Applications of FTIR in identification of foreign materials for biopharmaceutical clinical manufacturing. Vibrational Spectroscopy. 2009; 50: 152-159. Ref.:
  47. Yazdanian M. Overview of determination of biopharmaceutical properties for development candidate selection. Curr Protoc Pharmacol. 2013. Ref.:
  48. Lechuga-Ballesteros D. Chapter (7): Thermal Analysis of Lyophilized Pharmaceutical Peptide and Protein Formulations. In: Costantino HR, Pikal MJ (eds). Lyophilization of Biopharmaceuticals. Springer Science & Business Media: Arlington. 2005; 283.
  49. Chu B. Laser Light Scattering. Annu Rev Phys Chem. 1970; 21: 145-174.
  50. Niazi SK. Handbook of Preformulation: Chemical, Biological, and Botanical Informa Healthcare: USA. 2007.
  51. Sosic Z, Damian H, Blum A, Carlage T, Lyubarskaya Y. Application of Imaging Capillary IEF for Characterization and Quantitative Analysis of Recombinant Protein Charge Heterogeneity. Electrophor. 2008; 29: 4368-4376. Ref.:
  52. Michels DA, Oscar Salas-Solano, Chantal Felten. Imaged Capillary Isoelectric Focusing for Charge-Variant Analysis of Biopharmaceuticals. BioProcess Int. 2011; 9: 48-54. Ref.:
  53. Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. PSTT. 2000; 3: 129-137. Ref.:
  54. Ohtake S, Yoshiko Kita, Tsutomu Arakawa. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev. 2011; 63: 1053-1073. Ref.:
  55. Kleinman MH, Lee B. Chapter (14): challenges in early formulation: turning drug substance into drug product. In: Abdel-Magid AF, Caron S (eds). Fundamentals of early clinical drug development. Wiley: New Jersey. 2006; 272.
  56. Mills S. Training Workshop on Pharmaceutical Development with focus on Paediatric Formulations. Archived from the original WHO. 2012.
  57. Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci. 2011; 108: 15816-15821. Ref.:
  58. Fairand BP, Razem D. Chapter (12): Radiation sterilization. In: Nema S, Ludwig JD (eds). Pharmaceutical dosage forms: parenteral medications (3rd edition, vol. 2)-facility design, sterilization and processing. Informa: London. 2010; 292.
  59. IPEC. Excipients in pharmaceutical dosage forms: The challenge of the 21st century. IPEC, Nice. 1998.
  60. Nema S, Brendel RJ. Chapter (7): Excipients for parenteral dosage forms: regulatory considerations and controls. In: Nema S, Ludwig JD (eds). Pharmaceutical Dosage Forms: Parenteral Medications, Vol. 3: Regulations, Validation and the Future. Informa Healthcare, London. 2010; 123.
  61. De Jong HJ. The safety of pharmaceutical excipients. Therapie. 1999; 54: 11-14. Ref.:
  62. Steinberg M, Borzelleca JF, Enters EK, Kinoshita FK, Loper A, et al. A new approach to the safety assessment of pharmaceutical excipiens. The safety committee of the international pharmaceutical excipient council. Regul Toxicol Pharmacol. 1996; 24: 149-154. Ref.:
  63. Elder DP, Kuentz M, Holm R. Pharmaceutical excipients -quality, regulatory and biopharmaceutical considerations. Eur J Pharm Sci. 2016. 87: 88-99. Ref.:
  64. USP-NF General Chapter (1074) Excipient Biological Safety Evaluation Guidelines. 2016.
  65. Gokarn YR. Chapter (17): Excipients for Protein Drugs. In: Ashok K, Mahesh C. Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems. Informa Healthcare, New York. 2006.
  66. Cacace MG, Landau EM, Ramsden JJ. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997; 30: 241-277. Ref.:
  67. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin, DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011; 63: 1118-1159. Ref.:
  68.  Ref.:
  69. Aalto TR, Firman MC, Rigler NE. p-hydroxybenzoic acid esters as preservatives. I. Uses, antibacterial and antifungal studies, properties and determination. J Am Pharm Assoc Sci Ed. 1953; 42: 449-457. Ref.:
  70. Gerbino PP. Remington: The Science and practice of pharmacy, 21st edition. Lippincott Williams & Wilkins, Philadelphia.
  71. Roy S, Jung R, Kerwin BA, Randolphn TW. Effects of benzyl alcohol on aggregation of recombinant human interleukin-1receptor antagonist in reconstituted lyophilized formulations. J Pharm Sci. 2005; 94: 382-396. Ref.:
  72. Christensen PA. The stability of refined antivenin. Toxicon. 1975; 13: 75-77. Ref.:
  73. Rojas G, Jimenez JM, Gutiérrez JM. Caprylic acid fractionation of hyperimmune horse plasma: description of a simple procedure for antivenom production. Toxicon. 1994; 32: 351-363. Ref.:
  74. Abd-Elsalam MA, Abdoon N, Al-Ahaidib MS. What is the optimum concentration of mcresol in antivenoms? J Venom Anim Toxins incl Trop Dis. 2011; 17: 12-22. Ref.:
  75. Izzat IN, Bennett EO. Effect of varying concentrations of EDTA on the antimicrobial properties of cutting fluid preservatives. Microbios. 1979; 26: 37-44. Ref.:
  76. Whalley G. Preservative Properties of EDTA, Manuf. Chem. 1991; 62: 22-23.
  77. Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci. 1997; 86: 1250-1255. Ref.:
  78. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005; 94: 1928-1940. Ref.:
  79. Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat Biotechnol. 2000; 18: 52-57. Ref.:
  80. Kang J, Schwendeman SP. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants. Biomaterials. 2002; 23: 239-245. Ref.:
  81. Gualandi-Signorini AM, Giorgi G. Insulin formulations--a review. Eur Rev Med Pharmacol Sci. 2001; 5: 73-83. Ref.:
  82. Chen B, Costantino HR, Liu J, Hsu CC, Shire SJ. Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized states. J Pharm Sci. 1999; 88: 477-482. Ref.:
  83. Angelica Fatouros, Thomas Österberg, Marianne Mikaelsson. Recombinant factor VIII SQ-influence of oxygen, metal ions, pH and ionic strength on its stability in aqueous solution. Int J Pharm. 1997; 155: 121-131. Ref.:
  84. Treuheit MJ, Kosky AA, Brems DN. Inverse relationship of protein concentration and aggregation. Pharm Res. 2002; 19: 511-516. Ref.:
  85. Shah NH, Stiel D, Weiss M, Infeld MH, Malick AW. Evaluation of two new tablet lubricants-sodium stearyl fumarate and glyceryl behenate. Measurement of physical parameters (compaction, ejection and residual forces) in the tabletting process and effect of the dissolution rate. Drug Dev Ind Pharm. 1986; 12: 1329-1346. Ref.:
  86. Fassihi RA, Mcphillips AM, Uraizee SA, Sakr AM. Potential use of magnesium stearate and talc as dissolution retardants in the development of controlled drug delivery systems. Pharm Ind. 1994; 56: 579-583. Ref.:
  87. Maejima T, McGinity JW. Influence of film additives on stabilizing drug release rates from pellets coated with acrylic polymers. Pharm Dev Technol. 2001; 6: 211-221. Ref.:
  88. Sugimoto M, Matsubara K, Koida Y, Kobayashi M. The preparation of rapidly disintegrating tablets in the mouth. Pharm Dev Technol. 2001; 6: 487-493. Ref.:
  89. Shamblin S. Chapter(9): Controlled release using bilayer osmotic tablet technology: reducing theory to practice. In: Wen H, Park K (eds) Oral controlled release formulation design and drug delivery. Wiley & Sons, Inc.: New Jersey. 2010; 138.
  90. Siepmann J. Process and formulation factors affecting drug release from pellets coated with ethylcellulose pseudolatex aquacoat. In: McGinity JW, Felton LA (eds). Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, 3rd edition, New York: Informa Healthcare. 2008; 203-236.
  91. Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J Microencapsul. 2013; 30: 103-115. Ref.:
  92. Dulin W. Oral targeted drug delivery systems: enteric coating. Oral controlled release formulation design and drug delivery. 2010; 213.
  93. Felton LA, McGinity JW. Influence of insoluble excipients on film coating systems. Drug Dev Ind Pharm. 2002; 28: 225-243. Ref.:
  94. Rowe RC, Paul Sheskey J, Owen SC. Handbook of Pharmaceutical Excipients. 5th edition, Pharmaceutical Press. 2006.
  95. Felton LA, McGinity JW. Influence of pigment concentration and particle size on adhesion of an acrylic resin copolymer to tablet compacts. Drug Dev Ind Pharm. 1999; 25: 599-606. Ref.:
  96. Shanraw R, Mitrevej A, Shah M. A new era of tablet disintegrants. Pham Technol. 1980; 4: 48-57.
  97. Chang RK, Xiaodi Guo, Burnside BA, Couch RA. Fast-dissolving tablets. Pharm Technol. 2000; 24: 52-58. Ref.:
  98. Elshattawy HH, Dane Kildsig O, Garnet Peck E. Aspartame-mannitol resolidified fused mixture: characterization studies by differential scanning calorimetry, thermomicroscopy, photomicrography and X-ray diffractometry. Drug Dev Ind Pharm. 1984: 10: 1-17. Ref.:
  99. Lin YA. Enteric-coated pellet formulation and process scale-up improvement using mono- and diglycerides as a glidant. Poster Presentation. AAPS Annual Meeting, San Diego, CA. 2007.
  100. Abhijit Sonje, Arun Yadav, Chandra A, Jain DA. Formulation and evaluation of immediate release tablet of antihypertensive drugs according to BCS system. Int J Therap Appl. 2012; 7: 18-24. Ref.:
  101. Jones TM. Symposium on Powders. Dublin: Society of Cosmetic Chemists of Great Britain. 1969.
  102. Peleg M, Mannheim CH. Effect of conditioners on the flow properties of powdered sucrose. Powder Technol. 1973; 7: 45-50. Ref.:
  103. Tiwary AK. Dissolution. In: Gad SC. Preclinical Development handbook ADME and Biopharmaceutical Properties. John Wiley & Sons. Inc: New Jersey. 2008; 494.
  104. James KC. Solubility and Related Phenomena. Mercel Dekker Inc. 1986.
  105. Bai JPF, Guo JH, Mahesh VC. Use of nonactive pharmaceutical excipients in oral drug formulations: Biopharmaceutical classification system considerations. In: Katdare A, Chaubal MV. (eds) Excipient development for pharmaceutical, biotechnology, and drug delivery. Informa Healthcare USA, Inc.: New York. 182. 2006.
  106. Ungell A, Abrahamsson B. Chapter(4): Biopharmaceutical support in candidate drug selection. 2nd edition. In: Gibson M. Pharmaceutical Preformulation and Formulation. Informa Healthcare. 2009.
  107. Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev. 2007; 59: 546-567. Ref.:
  108. Valvani SC. Chapter (2): The Pharmaceutical Background. In: Lee C, et al. (eds) Clinical Trials of Drugs and Biopharmaceuticals. CRC Press Taylor & Francis Group: Boca Raton. 2006; 17.
  109. Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm. 1990; 62: 87-95. Ref.:
  110. USP, The United States Pharmacopeia. XXIII Revision, United States Pharmacopeial Convention, Rockville, Md. 1995.
  111. Hancock BC, Dalton CR. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars. Pharm Dev Techn. 1999; 4: 125-131. Ref.:
  112. Callahan J, Cleary GW, Elefant M, Kaplan G, Kensler T, et al. Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm; 1982; 8: 355-369. Ref.:
  113. Kumar L, Amin A, Bansal AK. An overview of automated systems relevant in pharmaceutical salt screening. Drug Discov Today. 2007; 12: 1046-1053. Ref.:
  114. Murikipudi V, Gupta P, Sihorkar V. Efficient throughput method for hygroscopicity classification of active and inactive pharmaceutical ingredients by water vapor sorption analysis. Pharm Dev Technol. 2013; 18: 348-358. Ref.:
  115. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991; 30: 3147-3161. Ref.:
  116. Pace CN, Shirley BA, McNutt M, Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996; 10: 75-83. Ref.:
  117. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999; 185: 129-188. Ref.:
  118. Cromwell ME, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006; 8: 572-579. Ref.:
  119. Brorson K, Phillips J. Defining your product profile and maintaining control over it, Part 4. Product-Related Impurities: Tackling Aggregates. Bioprocess Int. 2005; 3: 50-54. Ref.:
  120. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006; 8: 501-507. Ref.:
  121. Smales CM, Pepper DS, James DC. Protein modification during anti-viral heat-treatment bioprocessing of factor VIII concentrates, factor IX concentrates, and model proteins in the presence of sucrose. Biotechnol Bioeng. 2002; 77: 37-48. Ref.:
  122. McEntire J. Biotechnology Product Validation Part 5: Selection and Validation of Analytical Techniques. BioPharm. 1994; 7: 68-79.
  123. USP Guideline for Submitting Requests for Revision to USP-NF: V3.1 EXCIPIENTS. U S. PHARMACOPEIA. 2007. Ref.:
  124. Qualification of excipients for use in pharmaceuticals. IPEC. 2008. Ref.:
  125. International Conference on Harmonisation- Quality of biotechnological products: ICH Q5C: Stability testing of biotechnological/biological products. 1995.
  126. FDA. “FDA Guidance for Industry PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance,” September. 2004.
  127. WHO Annex 2. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. WHO Technical Report Series. No. 953. 2009.
  128. Patel J, Nadine Ritter M, Ruchi Kothari, Rashbehari Tunga, Binita Tunga S. Stability Considerations for Biopharmaceuticals: Overview of Protein and Peptide Degradation Pathways. BioProcess International. 2011; 9: 2-11. Ref.:
  129. Yu J. Intentionally Degrading Protein Pharmaceuticals to Validate Stability-Indicating Analytical Methods. BioPharm. 2000; 13: 46-52.
  130. Waterman KC, Adami RC. Accelerated ageing: prediction of chemical stability of pharmaceuticals. Int J Pharm. 2005; 293: 101-125. Ref.:
  131. Nieminen O, Kurki P, Nordström K. Differences in product information of biopharmaceuticals in the EU and the USA: implications for product development. Eur J Pharm Biopharm. 2005; 60: 319-326. Ref.:
  132. Kelly T. Accelerated Stability During Formulation Development of Early Stage Protein Therapeutics - Pros and Cons of Contrasting Approaches. KBI Biopharma. IBC Formulation Strategies for Protein Therapeutics. 2008.
  133. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014; 13: 655-672. Ref.:
  134. Silva AC, Lopes CM, Lobo JM, Amaral MH. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles. Curr Pharm Biotechnol. 2015; 16: 940-954. Ref.:
  135. Vilos C, Velasquez LA. Therapeutic Strategies Based on Polymeric Microparticles. J Biomed Biotechnol. 2012; 2012: 1-9. Ref.:
  136. Reis CP, Damgé C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods Enzymol. 2012; 508: 271-294. Ref.:
  137. Umer H, H Nigam, AM Tamboli, MSM Nainar. Microencapsulation: Process, Techniques and Applications. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011; 2: 474-481.
  138. Bock N, Dargaville TR, Woodruff MA. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. Eur J Pharm Biopharm. 2014; 87: 366-377. Ref.:
  139. Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 2011; 50: 7027-7031. Ref.:
  140. Rahman MA, Amin AR, Wang X, Zuckerman JE, Choi CH, et al. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J Control Release. 2012; 159: 384-392. Ref.:
  141. Silva AC, Amaral MH, Lobo JM, Lopes CM. Lipid nanoparticles for the delivery of biopharmaceuticals. Curr Pharm Biotechnol. 2015; 16: 291-302. Ref.:
  142. Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TR, et al. Development and Characterization of Polymeric Microspheres for Controlled Release Protein Loaded Drug Delivery System. Indian J Pharm Sci. 2008; 70: 303-309. Ref.:
  143. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA. 2006; 103: 4930-4934. Ref.:
  144. Radomsky ML, Whaley KJ, Cone RA, Saltzman WM. Macromolecules released from polymers: diffusion into unstirred fluids. Biomaterials. 1990; 11: 619-624. Ref.:
  145. Sandor M, Enscore D, Weston P, Mathiowitz E. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J Control Release. 2001; 76: 297-311. Ref.:
  146. Liggins RT, Burt HM. Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm. 2001; 222: 19-33. Ref.:
  147. Malyala P, Singh M. Micro/nanoparticle adjuvants: preparation and formulation with antigens. Methods Mol Biol. 2010; 626: 91-101. Ref.:
  148. Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater. 2013; 2: 72-94. Ref.:
  149. Zhao L, Arjun Seth, Nani Wibowo, Chun-Xia Zhao, Neena Mitter, et al. Nanoparticle vaccines. Vaccine. 2014; 32: 327-337. Ref.:
  150. Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, et al. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target. 2008; 16: 282-293. Ref.:
  151. Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, et al. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother. 2015; 11: 650-656. Ref.:
  152. Chaudhari KR, Ukawala M, Manjappa AS, Kumar A, Mundada PK, et al. Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res. 2012; 29: 53-68. Ref.:
  153. Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012; 4: 149-119. Ref.:
  154. Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014; 8: 5696-5706. Ref.:
  155. Baker R. Controlled release of biologically active agents. Wiley Interscience Publications. 1987.
  156. Baxter J, Mitragotri S. Needle-free liquid jet injections: mechanisms and applications. Expert Rev Med Devices. 2006; 3: 565-574. Ref.:
  157. Engwerda EE, Abbink EJ, Tack CJ, de Galan BE. Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care. 2011; 34: 1804-1808. Ref.:
  158. Jackson LA, Austin G, Chen RT, Stout R, DeStefano F, et al. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine. 2001; 19: 4703-4709. Ref.:
  159. Daniels CS. Needle-Free Injection: Pros and Cons. High Plains Dairy Conference. 2010; 25-36. Ref.:
  160. Stachowiak JC, Li TH, Arora A, Mitragotri S, Fletcher DA. Dynamic control of needle-free jet injection. J Control Release. 2009; 135: 104-112. Ref.:
  161. Taberner A, Hogan NC, Hunter IW. Needle-free jet injection using real-time controlled linear Lorentz-force actuators. Med Eng Phys. 2012; 34: 1228-1235. Ref.:
  162. Kontermann R. Therapeutic Proteins: Strategies to Modulate Their Plasma HalfLives. Wiley-VCH: Verlag GmbH. 2012.
  163. Mero A, Pasqualin M, Campisi M, Renier D, Pasut G. Conjugation of hyaluronan to proteins. Carbohydr Polym. 2013; 92: 2163-2170. Ref.:
  164. Zhao H, Yang K, Martinez A, Basu A, Chintala R, et al. Linear and branched bicin linkers for releasable PEGylation of macromolecules: controlled release in vivo and in vitro from mono- and multi-PEGylated proteins. Bioconjug Chem. 2006; 17: 341-351. Ref.:
  165. Riggs-Sauthier J, Riley T. The Benefits and Challenges of PEGylating Small Molecules. Pharmaceutical Technology. 2008.
  166. Peters T. All about albumin. Academic Press. 1995.
  167. Kermode M. Unsafe injections in low-income country health settings: need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int. 2004; 19: 95-103. Ref.:
  168. Schaepelynck P, Darmon P, Molines L, Jannot-Lamotte MF, Treglia C, et al. Advances in pump technology: insulin patch pumps, combined pumps and glucose sensors, and implanted pumps. Diabetes Metab. 2011; 37: 85-93. Ref.:
  169. Ricotti L, Assaf T, Dario P, Menciassi A. Wearable and implantable pancreas substitutes. J Artif Organs. 2013; 16: 9-22. Ref.:
  170. Erasmo Lopez A, Atif Yardimci. Designing and Manufacturing Biopharma Delivery Devices. MDDI. 2015. Ref.:
  171. Lopez I, Rodríguez-Ortiz ME, Almadén Y, Guerrero F, de Oca AM, et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 2011; 80: 475-482. Ref.:
  172. Farra R, Sheppard NF Jr, McCabe L, Neer RM, Anderson JM, et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med. 2012; 4: 122ra21. Ref.:
  173. Zisser H, Palerm CC, Bevier WC, Doyle FJ 3rd, Jovanovic L. Clinical update on optimal prandial insulin dosing using a refined run-to-run control algorithm. J Diabetes Sci Technol. 2009; 3: 487-491. Ref.:
  174. Andrade F, Catarina M, Bruno S. Pulmonary Delivery of Biopharmaceuticals. Mucosal Delivery of Biopharmaceuticals. Springer. 2014. Ref.:
  175. Roth Y, Chapnik JS, Cole P. Feasibility of aerosol vaccination in humans. Ann Otol Rhinol Laryngol. 2003; 112: 264-270. Ref.:
  176. Lu D, Hickey AJ. Pulmonary vaccine delivery. Expert Rev Vaccines. 2007; 6: 213-226. Ref.:
  177. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002; 7: 967-975. Ref.:
  178. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems. J Pharm Sci. 2007; 96: 473-483. Ref.:
  179. Dae-Duk K. In vitro Cellular Models for Nasal Drug Absorption Studies. Drug absorption studies. 2007; 216-234. Ref.:
  180. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000; 17: 978-984. Ref.:
  181. Yuba E, Kono K. Nasal Delivery of Biopharmaceuticals. Mucosal Delivery of Biopharmaceuticals. Springer. 2014; 197-220. Ref.:
  182. Dahl AR, Lewis JL. Respiratory tract uptake of inhalants and metabolism of xenobiotics. Annu Rev Pharmacol Toxicol. 1993; 33: 383-407. Ref.:
  183. Mitra AK, Krishnamoorthy R. Prodrugs for nasal drug delivery. Adv Drug Deliv Rev. 1998; 29: 135-146. Ref.:
  184. Nema T, Jain A, Hurkat P, Shilpi S, Gulbake A, et al. Insulin delivery through nasal route using thiolated microspheres. Drug Deliv. 2013; 20: 210-215. Ref.:
  185. Coucke D, Schotsaert M, Libert C, Pringels E, Vervaet C, et al. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine. 2009; 27: 1279-1286. Ref.:
  186. Jabbal-Gill I. Nasal vaccine innovation. J Drug Target. 2010; 18: 771-786. Ref.:
  187. de Boer AG, Moolenaar F, de Leede LG, Breimer DD. Rectal drug administration: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1982; 7: 285-311. Ref.:
  188. Kozlowski PA, Williams SB, Lynch RM, Flanigan TP, Patterson RR, et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol. 2002; 169: 566-574. Ref.:
  189. Pechine S, Denève C, Le Monnier A, Hoys S, Janoir C, et al. Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol. 2011; 63: 73-81. Ref.:
  190. Czerkinsky C, Holmgren J. Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol. 2012; 354: 1-18. Ref.:
  191. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000; 6: 1253-1257. Ref.:
  192. Medi BM, Singh J. Electronically facilitated transdermal delivery of human parathyroid hormone (1-34). Int J Pharm. 2003; 263: 25-33. Ref.:
  193. Rastogi R, Anand S, Dinda AK, Koul V. Investigation on the synergistic effect of a combination of chemical enhancers and modulated iontophoresis for transdermal delivery of insulin. Drug Dev Ind Pharm. 2010; 36: 993-1004. Ref.:
  194. Alba N, Naik A, Guy RH, Kalia YN. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm Res. 2005; 22: 2069-2078. Ref.:
  195. Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, et al. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. Int J Pharm. 2016; 501: 350-361. Ref.:
  196. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006; 11: 905-910. Ref.:
  197. Whitehead K, Shen Z, Mitragotri S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J Control Release. 2004; 98: 37-45. Ref.:
  198. Gupta V, Hwang BH, Lee J, Anselmo AC, Doshi N, et al. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release. 2013; 172: 753-762. Ref.:
  199. Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012; 161: 235-246. Ref.:
  200. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med. 2013; 5: 213ra167. Ref.:
  201. McGinity JW, Stavchansky SA, Martin A. Bioavailability in Tablet Technology. Marcel Dekker: New York. 1981.
  202. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010; 12: 348-360. Ref.:
  203. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006; 3: 275-287. Ref.:
  204. DEWS. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007; 5: 93-107. Ref.:
  205. Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, et al. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm. 2015; 95: 261-270. Ref.:
  206. Peng L, Cheng X, Zhuo R, Lan J, Wang Y, et al. Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. J Biomed Mater Res A. 2009; 90: 564-576. Ref.:
  207. Elangovan S, Jain S, Tsai PC, Margolis HC, Amiji M. Nano-sized calcium phosphate particles for periodontal gene therapy. J Periodontol. 2013; 84: 117-125. Ref.:
  208. Torchilin V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol. 2008; 5: 95-103. Ref.:
  209. Fu J, Yu C, Li L, Yao SQ. Intracellular Delivery of Functional Proteins and Native Drugs by Cell-Penetrating Poly(disulfide)s. J Am Chem Soc. 2015; 137: 12153-12160. Ref.:
  210. Zolot RS, Satarupa B, Ryan Million P. Antibody-drug conjugates. Nature Reviews Drug Discovery. 2013; 12: 259-260. Ref.:
  211. He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials. 2012; 33: 8569-8578. Ref.:
  212. Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014; 6: 240-247. Ref.: