Research Article

Nanotherapeutic agent for cancer: Miracle or catastrophe

Archna Dhasmana*

Published: 06/28/2019 | Volume 3 - Issue 1 | Pages: 010-012

Short Communication

Nanotechnology is a smart technology in the field of biomedical engineering used for the diagnosis and treatment of diseases. Nanodrugs provide better encapsulation of drug and efficiency at low dosage to kill the targeted tissue/cells. However, the chances of chronic toxicity and high cost of treatment limits its applicability [1]. To overcome these problems still, the experts of the scientific community have been working on it, to design the best one and cost-effective treatment for the human welfare.

Read Full Article HTML DOI: 10.29328/journal.abse.1001005 Cite this Article


  1. Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017; 18: 2702. Ref.:
  2. Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. In Nano medicine in Cancer. 2017; 3: 27-46. Ref.:
  3. Wang Y, Yu L, Monopoli MP, Sandin P, Mahon E, et al. Nanomedicine: nanotechnology. Biol Med. 2015; 11: 313-327.
  4. Pippa N, Demetzos C, Pispas S, editors. Drug Delivery Nanosystems: From Bioinspiration and Biomimetics to Clinical Applications. CRC Press; 2019. Ref.:
  5. Wei T, Chen C, Liu J, Liu C, Posocco P, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A. 2015; 112: 2978-2983. Ref.:
  6. Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng. 2018; 7; 9: 105-127. Ref.:
  7. Zhang P, Wang J, Chen H, Zhao L, Chen B, et al. Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration. J Am Chem Soc. 2018; 140: 14980-14989. Ref.:
  8. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, et al. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine. 2015; 11: 947-958. Ref.:
  9. Song J, Lin C, Yang X, Xie Y, Hu P, et al. Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways. J Control Release. 2019; 294: 27-42. Ref.:
  10. Greenstein JP. Biochemistry of cancer. Elsevier. 2016; Ref.:
  11. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012; 62: 220-241. Ref.:
  12. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016; 66: 271-289. Ref.:
  13. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015; 348: 69-74. Ref.:
  14. Ahles TA, Root JC. Cognitive effects of cancer and cancer treatments. Annu Rev Clin Psychol. 2018; 14: 425-451. Ref.:
  15. Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008; 59: 251-265. Ref.:
  16. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008; 58: 97-110. Ref.:
  17. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017; 17: 20. Ref.:
  18. Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nature medicine. 1998 Jun;4(6):655., Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Med. 2002; 2: 750. Ref.:
  19. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016; 27: 2225-2238. Ref.:
  20. Chen Q, Liang C, Wang C, Liu Z. An imagable and photothermal “Abraxane‐like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumours. Adv Mater. 2015; 27: 903-910. Ref.:
  21. Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017; 117: 13566-13638. Ref.:
  22. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bio conjugated nanoparticles for drug delivery. Molecular cancer therapeutics. 2006; 5: 1909-1917. Ref.:
  23. Olov N, Bagheri‐Khoulenjani S, Mirzadeh H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J Biomed Mater Res A. 2018; 106: 2272-2283. Ref.:
  24. Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, et al. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules. 2019; 24: 1117. Ref.:
  25. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, et al. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008; 26: 74-85. Ref.:
  26. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005; 5: 161-171. Ref.:
  27. van Elk M, Murphy BP, Eufrasio-da-Silva T, O’Reilly DP, Vermonden T, et al. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm. 2016; 515: 132-164. Ref.:
  28. Qin SY, Zhang AQ, Cheng SX, Rong L, Zhang XZ. Drug self-delivery systems for cancer therapy. Biomaterials. 2017; 112: 234-247. Ref.: