Research Article

Wifi and health: Perspectives and risks

Myriam Ben Salah*, Hafedh Abdelmelek and Manef Abderraba

Published: 10/12/2017 | Volume 2 - Issue 1 | Pages: 012-022


Increased exposure to electromagnetic fields such as radio frequencies used by Wifi technology raise questions and concerns about their impact on health. For answer these questions, several scientific studies have carried out followed by results publication in prestigious scientific revues. Literature conducted on the effects of non-ionizing radiation and Wifi waves is vast and sometimes controversial. Epidemiological studies and the results of in vitro and in vivo experimental studies have showed the biological effects of electromagnetic field in different frequencies range. These effects caused disorders at the molecular and behavioral level. However, these studies were insufficient to confirm the directly related effects to the cause. Therefore, further research must be done to raise the controversy about the safety of wireless waves.

Read Full Article HTML DOI: 10.29328/journal.hbse.1001002 Cite this Article


  1. Esteves Sobral, Jordan PS. Teyssendier de Maistre (2009) Les Effets du Wifi sur la santé. Note de synthèse.
  2. UNEP/WHO/IRPA. United Nations Environment Programme/International Radiation. 1987.
  3. Barnothy MF. Biological effects of magnetic field. Plenum Press: New York Press. 1964.
  4. Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993; 51: 410-416. Ref.:
  5. Blank M. Biological effects of environmental electromagnetic fields: molecular mechanisms. Biosystems. 1995; 35: 175-178. Ref.:
  6. Blank M. Electromagnetic fields: biological interactions and mechanisms. New York: American Chemical Society. 1995. Ref.:
  7. Binhi VN, Savin AV. Molecular gyroscopes and biological effects of weak extremely low frequency magnetic fields. Phys Rev E Stat Nonlin Soft Matter Phys. 2002; 65: 1-10. Ref.:
  8. Starvroulakis P. Biological effects of electromagnetic fields. Berlin Heidelberg Springer-Varlag. Postgrad Med J. 2003; 80: 253-261. Ref.:
  9. Chater S, Abdelmelek H, Couton D, Joulin V, Sakly M, et al. Subacute exposure to magnetic field induced apoptosis in thymus female rats. Pak J Med Sci. 2005; 21: 292-297. Ref.:
  10. Abdelmelek H, Molnar S, Servais S, Cottet−Emard JM, Pequignot JM, et al. Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm. 2006; 113: 821-827. Ref.:
  11. Amara S, Abdelmelek H, Abidi R, Sakly M, Ben Rhouma K. Zinc prevents hematological and biochemical alteration induced by static magnetic field in rats. Pharmacol Rep. 2006; 57: 616-622. Ref.:
  12. Chater S, Abdelmelek H, Pequignot JM, Sakly M, Rhouma KB. Effects of subacute exposure to static magnetic field on hematologic and biochemical parameters in pregnant rats. Electromagn Biol Med. 2006 ; 25: 135-144. Ref. :
  13. Elferchichi M, Mercier J, Coisy-Quivy M, Metz L, Lajoix AD, et al. Effects of exposure to a 128-mT static magnetic field on glucose and lipid metabolism in serum and skeletal muscle of rats. Arch Med Res. 2010; 41: 309-314. Ref. :
  14. Lahbib A, Elferchichi M, Ghodbane S, Belguith H, Chater S, et al. Time-dependent effects of exposure to static magnetic field on glucose and lipid metabolism in rat. Gen Physiol Biophys. 2010; 29: 390-395. Ref.:
  15. Roy S, Noda Y, Eckert V, Traber MG, Mori A, et al. The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett. 1995; 76: 164-166. Ref.:
  16. Lacy-Hulbert A, Metcalfe JC, Hesketh R. Biological responses to electromagnetic fields. Faseb J. 1998; 12: 395-420. Ref.:
  17. Crouzier D, Debouzy JC, Bourbon F, Collin A, Perrin A, et al. Neurophysiologic effects at low level 1.8 GHz radiofrequency field exposure: a multiparametric approach on freely moving rats. Pathologie Biologie. 2007; 55: 134-142. Ref.:
  18.  Crouzier D, Testylier G, Perrin A, Debouzy JC. Which Neurophysiologic effects at low level 2.45 GHz exposure?. Pathologie Biologie. 2007; 55: 235-241. Ref.:
  19. Akoev IG, Pashovkina MS, Dolgacheva LP, Semenova TP, Kalmykov V L. Enzymatic activity of some tissues and blood serum from animals and humans exposed to microwaves and hypothesis on the possible role of free radical processes in the nonlinear effects and modification of emotional behavior of animals. Radiat Biol Radioecol. 2002; 42: 332-330. Ref.:
  20. Belpomme D, Irigaray P, Hardell L. Electromagnetic fields as cancer-causing agents. Environmental Research. 2008; 107: 289-290.
  21. Conseil Supérieur de la Santé (2008) Effets biologiques potentiels des micro-ondes modulées. Publication N°8194, 1.
  22. Baptiste J (2001) Effets biologiques des ELF. Sciences et avenir : 87-88.
  23. Hée G, Méreau P, Dornier G (2002) Champs et ondes électromagnétique. Travail et sécurité
  24. Hygiène et sécurité du travail N°182, 1er trimestre (2001) Guide pour l’établissement de limites d’exposition aux champs électriques, magnétiques et électromagnétiques
  25. Feychting M. Health effects of static magnetic fields--a review of the epidemiological evidence, Prog Biophys Mol Biol, 2005; 87: 241-246. Ref.:
  26. Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, et al. Effects of extremely low-frequency magnetic field in the brain of rats. Brain Research Bulletin. 2006; 68: 355-360. Ref.:
  27. Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH. Assessement of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Saf. 2008; 71: 895-902. Ref.:
  28. Plante M. Cellulaires et santé: êtes-vous sur la même longueur d’onde que vos patients?. Le Médecin du Québec. 2010; 45: 41-46.
  29. Institut National de Recherche et de Sécurité (INRS) (2012) Champs électromagnétiques: Les réseaux sans fil de proximité. ED 4207.
  30. Lai H, Singh NP. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol. 1996; 69: 513-521. Ref.:
  31. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006; 602:135-142. Ref.:
  32. Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-Regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett. 2007; 412: 34-38. Ref.:
  33. Belyaev IY, Koch CB, Terenius O, Roxström- Lindquist K, Malmgren LOH, et al. Exposure of rat brain to 915MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects in chromatin conformation. Bioelectromagnetics. 2006; 27: 295-306. Ref.:
  34. Programme national de recherche PNR 57 Résultats du programme national de recherche sur les éventuels risques sanitaires émanant des rayonnements électromagnétiques. Rayonnement non ionisant. Environnement ET santé. 2011.
  35. Wertheimer N, Savitz DA, Leeper E. Childhood cancer in relation to indicators of magnetic fields from ground current sources. Bioelectromagnetics. 1995; 16: 86-96. Ref.:
  36. AldrichTE, Andrews KW, Liboff AR. Brain cancer risk and electromagnetic fields (EMFs) assessing the geomagnetic component. Arch Environ Health. 2001; 56: 314-319. Ref.:
  37. Rozanski C, Belton M, Prato FS, Carson JJ. Real-time measurement of cytosolic free calcium concentration in DEM-treated HL-60 cells during static magnetic field exposure and activation by ATP. Bioelectromagnetics. 2009; 30: 213-221. Ref.:
  38. De Nicola M, Cordisco SC, Cerella MC, Albertini M, D’Alessio A, et al. Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci. 2006; 1090: 59-68. Ref.:
  39. Nuccitelli S, Cerella C, Cordisco S, Albertini MC, Accorsi A, et al. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann NY Acad Sci. 2006; 1090: 217-225. Ref.:
  40. Tenuzzo B, Vergallo C, Dini L. Effect of 6mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell. 2009; 41: 169-179. Ref.:
  41. Khadir R, Morgan JL, Murray JJ. Effects of 60 Hz magnetic field exposure on polymorphonuclear leukocyte activation. Biochem Biophys Acta. 1999; 1472: 359-367. Ref.:
  42. Kula B, Sobczak A, Kuska R. Effects of static and ELF magnetic fields on free-radical processes in rat liver and kidney. Electron Magnetobiol. 2000; 19: 99-105. Ref.:
  43. Simko M, Droste S, Kriehuber R, Weiss DG. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic field. Eur J Cell Biol. 2001; 80: 562-566. Ref.:
  44. Lupke M, Rollwitz J, Simko M. Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Radic Res. 2004; 38: 985-993. Ref.:
  45. Savitz DA. Overview of occupational exposure to electric and magnetic fields and cancer, advancements in exposure assessment. Environ Health Perspect. 1995; 103: 69-74. Ref.:
  46. Lewy H, Massot O, Touitou Y. Magnetic field (50 Hz) increases N-acetyltransferase, hydroxyindole-O-methyltransferase activity and melatonin release through an indirect pathway. Int J Radiat Biol, 2003; 79: 431-435. Ref.:
  47. Yokus B, Cakir DU, Akday MZ, Sert C, Mete N. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radic Res. 2005; 39: 317-323. Ref.:
  48. Lai H, Singh NP. Acute exposure to a 60Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 2004; 18: 156-165.
  49. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, et al. Zinc supplementation ameliorates static magnetic field oxydative stress in rat tissues. Environmental Toxicology and Pharmacology. 2007; 23:193-197. Ref.:
  50. Valberg PA, van Deventer TE, Repacholi MH. Workgroup Report, Base Stations and Wireless Networks-Radiofrequency (RF) Exposures and Health Consequences. Environmental Health Perspectives, 2007; 115: 416-424. Ref.:
  51. Micallef N, Vallé S, Woringer M. Effets des ondes électromagnétiques sur le vivant Culture libre. sciences ouverte. 2008.
  52. Brunel JL. Les risques liés au WiFi. Observatoire Académique de la Sécurité Informatique: études/actualités. 2004.
  53. Mokdad M. Wi-Fi et son usage Contexte et implication. CIW, 2007, Le WI-FI. 2009.
  54. Hardell L, Mild KH. Re: “cellular telephone use and risk of acoustic neuroma” (author reply 4-5). Am J Epidemiol. 2004; 160: 923-926. Ref.:
  55. Lonn S, Ahlbom A, Hall P, Feychting M. Mobile phone use and the risk of acoustic neuroma. Epidemiology. 2004; 15: 653-659. Ref.:
  56. Lai H, Horita A, Chou CK, Guy AW. Effects of low-level microwave irradiation on hippocampal and frontal cortical choline uptake are classically conditionable. Pharmacol Biochem Behav. 1987; 27: 635-639. Ref.:
  57. Lai H, Carino MA, Horita A, Guy AW. Low-level microwave irradiation and central cholinergic systems. Pharmacol Biochem Behav. 1989; 33: 131-138. Ref.:
  58. Lai H, Carino MA, Wen YF, Horita A, Guy AW. Naltrexone pretreatment blocks microwave induced changes in central cholinergic receptors. Bioelectromagnetics. 1991; 12: 27-33. Ref.:
  59. Kwee S, Raskmark P, Velizarov S. Changes in cellular proteins due to environmental nonionizing radiation. I. Heat-shock proteins. Electro Magnetobiol. 2001; 20: 141-152. Ref.:
  60. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007; 405:559-568. Ref.:
  61. Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology. 2009; 16: 71-78. Ref.:
  62. Fragopoulou AF, Margaritis LH. Is cognitive function affected by mobile phone radiation exposure? In: L. Giuliani, M. Soffritti, eds. Non Thermal Effects and Mechanisms of interaction between electromagnetic fields and living matter. European Journal of Oncology-Library. 2010; 5: 261-273. Ref.:
  63. Fragopoulou A, Grigoriev Y, Johansson O, Margaritis LH, Morgan L, et al. Scientific panel on electromagnetic field health risks-consensus points, recommendations and rationales. Reviews on Environmental Health. 2010; 25: 307-317. Ref.:
  64. Ntzouni MP, Stamatakis A, Stylianopoulou F, Margaritis LH. Short term memory in mice is affected by mobile phone radiation. Pathophysiology. 2011; 18: 193-199. Ref.:
  65. Ntzouni MP, Skouroliakou A, Kostomitsopoulos N, Margaritis LH. Transient and cumulative memory impairements induced by GSM 1.8 GHz cell phone signal in a mouse model. Electromagn Biol Med. 2013; 32: 95-120. Ref.:
  66. Firstenberg A. Radio Wave Packet. President, Cellular Phone Taskforce. 2001. Ref.:
  67. Butrous GS, Male JC, Webber R S, Barton DG, Meldrum SJ, et al. The effect of power frequency high intensity electric fields on implanted cardiac Pacemakers. Pacing Clin Electrophysiol. 1983; 6: 1282-1292. Ref.:
  68. Kainz W, Casamento JP, Ruggera PS, Chan DD, Witters DM. Implantable cardiac pacemaker electromagnetic compatibility testing in a novel security system simulator. IEEE Trans Biomed Eng. 2005; 52: 520-530. Ref.:
  69. Elferchichi M, Mercier J, Abdelmelek H, Sakly M, Lambert K, et al. Effects of exposure to a 128-mT static magnetic field on glucose and lipid metabolism in serum and skeletal muscle of rats. Arch Med Res. 2010; 41: 309-314. Ref.: