Research Article

The PVSG/WHO versus the Rotterdam European clinical, molecular and pathological diagnostic criteria for the classification of myeloproliferative disorders and myeloproliferative neoplasms (MPD/MPN): From Dameshek to Georgii, Vainchenker and Michiels 1950-2018

Jan Jacques Michiels* and Hendrik De Raeve

Published: 04/17/2019 | Volume 2 - Issue 1 | Pages: 027-050


The present article extends the PVSG-WHO criteria into a simplified set of Rotterdam and European Clinical, Molecular and Pathological (RCP/ECMP) criteria to diagnose and classify the myeloproliferative neoplasms (MPNs). The crude WHO criteria still miss the masked and early stages of ET and PV. Bone marrow histology has a near to 100% sensitivity and specificity to distinguish thrombocythemia in BCR/ABL positive CML and ET, and the myelodysplastic syndromes in RARS-T and 5q-minus syndrome from BCR/ABL negative thrombocythemias in myeloproliferative disorders (MPD). The presence of JAK2V617F mutation with increased erythrocytes above 6x1012/L and hematocrit (>0.51 males and >0.48 females) is diagnostic for PV obviating the need of red cell mass measurement. About half of WHO defined ET and PMF and 95% of PV patients are JAK2V617F positive. The combination of molecular marker screening JAK2V617F, JAK2 exon 12, MPL515 and CALR mutations and bone marrow pathology is 100% sensitive and specific for the diagnosis of latent, early and classical ECMP defined MPNs. The translation of WHO defined ET, PV and PMF into ECMP criteria have include the platelet count above 350 x109/l, mutation screening and bone marrow histology as inclusion criteria for thrombocythemia in various MPNs. According to ECMP criteria, ET comprises three distinct phenotypes of true ET, ET with features of early (“forme fruste” PV), and ET with a hypercellular erythrocythemic, megakaryocytic granulocytic myeloproliferation (EMGM or masked PV). The ECMP criteria clearly differentiate early erythrocythemic, prodromal and classical PV from congenital polycythemia and idiopathic or secondary erythrocytosis. The burden of JAK2V617F mutation in heterozygous ET and in homozygous PV is of major clinical and prognostic significance. JAK2 wild type MPL515 mutated normocellular ET and MF lack PV features in blood and bone marrow. JAK2/MPL wild type hypercellular ET associated with primary megakaryocytic granulocytic myeloproliferation (PMGM) is the third distinct CALR mutated MPN. The translation of WHO into ECMP criteria for the classification of MPNs have a major impact on prognosis assessment and best choice for first line non-leukemogenic approach to postpone potential leukemogenic myelopsuppressive agents as long as possible in ET, PV and PMGM patients..

Read Full Article HTML DOI: 10.29328/journal.ijbmr.1001004 Cite this Article


  1. Heuck G. Two cases of leukemia with peculiar blood resp. Bone marrow findings. Virch Archiv. 1879; 78: 475-496.
  2. Vaquez MH. On a special form of cyanosis accompanied by excessive and persistent hyperglobulism. Minutes of meetings of the Society of Biology. 1892; 44: 384-388.
  3. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951; 6: 372-375. Ref.:
  4. Nowell PC, Hungerford DA. A minute chromosome in human chronic, granulocytic leukemia. Science. 1960; 142: 1497.
  5. Rowley J. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence Giemsa staining. Nature. 1973; 243: 290-291. Ref.:
  6. De Klein A, Van Kessel AG, Grosveld GG, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature. 1982; 300: 765-767. Ref.:
  7. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of BCR/ABL oncogene products. Science. 1990; 247: 1079-1082. Ref.:
  8. Kelliber MA, McLaughin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous-like syndrome in mice with v-abl and BCR/ABL. Proc Nat Sci. 1990; 87: 6649-6653. Ref.:
  9. Shephard PCA, Ganesan TS, Galton DAG. Haematological classification of the chronic myeloid leukemias. Baillière’s Clin Haematol. 1987; 1: 887-906. Ref.:
  10. Michiels JJ, Prins ME, Hagemeijer A, Brederoo P, Van der Meulen J, et al. Philadelphia chromosome-positive thrombocythemia and megakaryoblast leukemia. Am J Clin Pathol. 1987; 88: 645-652. Ref.:
  11. Dameshek W. Physiopathology and course of polycythemia vera as related to therapy. J Am Med Ass. 1950; 142: 790-797. Ref.:
  12. James C, Ugo V, Le Couedic PF, Staerk J, Delhommeau F, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature. 2005; 434: 1144-1148. Ref.:
  13. James C, Ugo V, Casadevall N, Constantinescu SN, Vainchenker W. A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med. 2005; 11: 546-554. Ref.:
  14. Thiele J, Zankovich R, Schneider G, Kremer B, Fischer R, et al. Primary (essential) thrombocythemia versus polycythemia rubra vera. A histomorphometric analysis of bone marrow features in trephine biopsies. Analyt Quat Cytol Histol. 1988; 10: 375-382. Ref.:
  15. Thiele J, Schneider G, Hoeppner B, Wienhold S, Zankovich R, et al. Histomorphometry of bone marrow biopsies in chronic myeloproliferative disorders with associated thrombocythosis – features of significance for the diagnosis of primary (essential) thrombocythemia. Virch Arch A Path Anat. 1988; 413: 407-417. Ref.:
  16. Thiele J, Zankovich R, Steinberg T, Kremer B, Fischer R, et al. Primary (essential) thrombocythemia versus hyperplastic stages of agnogenic myeloid metaplasia with thrombocytosis: a critical evaluation of clinical and histomorphological data. Acta Haematol. 1989; 81: 192-202. Ref.:
  17. Thiele J, Zankovich R, Steinberg T, Fischer R, Diehl V. Agnogenic myeloid metaplasia (AMM) – correlation of bone marrow lesions with laboratory data: a longitudinal clinicopathological study on 114 patients. Hematol Oncol. 1989; 7: 327-343. Ref.:
  18. Georgii A, Vykoupil KF, Buhr Th, Choritz H, Doehler U, et al. Chronic myeloproliferative disorders in bone marrow biopsies. Path Res Pract. 1990; 186: 3-27. Ref.:
  19. Wasserman LR. The management of polycythemia vera. Br J Haematol. 1971; 21: 371-376. Ref.:
  20. Berlin NI. Diagnosis and classification of the polycythemias. Sem Hematol. 1975; 12: 339-351. Ref.:
  21. Laszlo J. Myeloproliferative disorders (MPD): myelofibrosis, myelosclerosis, extramedullary hematopoiesis, undifferentiated MPD and hemorrhagic thrombocythemia. Semin Hematol. 1975; 12: 409-432. Ref.:
  22. Murphy S, Iland H, Rosenthal D, Laszlo J. Essential thrombocythemia: An interim report from the Polycythemia Vera Study Group. Semin Hematol. 1986; 23: 177-182. Ref.:
  23. Murphy S, Peterson P, Iland H, Laszlo J. Experience of the Polycythemia Vera Study Group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Sem Hematol. 1997; 34: 29-39. Ref.:
  24. Michiels JJ. Diagnostic criteria of the myeloproliferative4 disorders (MPD): essential thrombocythemia, polycythemia vera, and chronic megakaryocytic granulocytic metaplasia. Neth J Med. 1997; 51: 57-64. Ref.:
  25. Jaffe S, Harris NL, Stein H. WHO classification of the chronic myeloproliferative diseases (CMPD) polycythemia vera, chronic idiopathic myelofibrosis, essential thrombocythemia and CMPD unclassifiable. Tumours of Haematopoiesis and Lymphoid Tissues. Lyon. 2001; 31-42.
  26. Michiels JJ, De Raeve H, Berneman Z, Van Bockstaele D, Hebeda K, et al. The 2001 World Health Organization (WHO) and updated European clinical and pathological (ECP) criteria for the diagnosis, classification and staging of the Ph1-chromosome negative chronic myeloproliferative disorders (MPD). Sem Thromb Hemostas. 2006; 32: 307-340.
  27. Thiele J, Kvasnicka HM, Diehl V, Fischer R, Michiels JJ. Clinicopathological diagnosis and differential criteria of thrombocythemias in various myeloproliferative disorders by histopathology, histochemistry and immunostaining from bone marrow biopsies. Leukemia and Lymphoma. 1999; 33: 207-218. Ref.:
  28. Thiele J, Kvasnicka HM. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classifications systems (PVSG-WHO) on 839 patients. Ann Hematol. 2003; 82: 148-152. Ref.:
  29. Florena AM, Tripodo C, Iannitto E, Porcasi R, Ingrao S, et al. Value of bone marrow biopsy for diagnosis of essential thrombocythemia. Haematologica. 2004; 89: 911-919. Ref.:
  30. Lengfelder E, Hochhaus A, Kronawitter U. Should a platelet count of 600 x109/l be used as a diagnostic criterion in essential thrombocythemia? An analysis of the natural course including early stages. Br J Haematol. 1998; 100: 15-23.
  31. Sacchi S, Vinci G, Gugliotta L, Rupoli S, Garganti L, et al. Diagnosis of essential thrombocythemia at platelet counts between 400 and 600x109/l. Gruppo Italiano Malattie Mieloproliferative Chroniche (GIMMC). Haematologica. 2000; 85: 492-495. Ref.:
  32. Michiels JJ, Ten Kate FWJ. Erythromelalgia in thrombocythemia of various myeloproliferative disorders. Am J Hematol. 1992; 39: 131-136. Ref.:
  33. Michiels JJ, Juvonen E. Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study Group. Semin Thromb Hemostas. 1997; 23: 339-347. Ref.:
  34. Wasserman LR. Polycthemia vera, its course and treatment: relation to myeloid metaplasia and leukemia. Bull NY Acad Med. 1954; 30: 343-375. Ref.:
  35. Wasserman LR, Berk PD, Berlin NI. Polycythemia vera and the myeloproliferative disorders. WB Saunders Philadelphia. 1995; ISBN 0-7216-4213-6.
  36. Michiels JJ, Barbui T, Fruchtman SM, Kutti J, Rain JD, et al. Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG. Leukemia Lymphoma. 2000; 36: 239-253. Ref.:
  37. Pearson TC, Wetherley-Mein G. The course and complications of idiopathic erythrocytosis. Clin Lab Haematol. 1979; 1: 189-196. Ref.:
  38. Najean Y, Triebel F, Dresch C. Pure erythrocytosis: reappraisal of a study of 51 patients. Am J Hematol. 1981; 10: 129-136. Ref.:
  39. Kurnick JE, Ward HP, Block MH. Bone marrow sections in the differential diagnosis of polycythemia. Arch Path. 1972; 94: 489-499. Ref.:
  40. Ellis JT, Silver RT, Coleman M, Geller SA. The bone marrow in polycythemia vera. Sem Hematol. 1975; 12: 433-444. Ref.:
  41. Ellis JT, Peterson P. The bone marrow in polycythemia vera. Pathol Annu. 1979; 14: 383-403. Ref.:
  42. Prchal JF, Axelrad AE. Bone marrow responses in polycythemia vera. N Eng J Med. 1974; 290: 1382. Ref.:
  43. Prchal JF, Axelrad A, Crookston JH. Erythroid colony formation in plasma culture from cells of peripheral blood in myeloproliferative disorders. Blood. 1974; 44: 912.
  44. Zanjani ED, Lutton JD, Hoffman R, Wasserman LR. Erythroid colony formation by polycythemia vera bone marrow in vitro. Dependence on erythropoietin. J Clin Invest. 1977; 59: 841-848. Ref.:
  45. Casadevall N, Lacombe C, Varet B. In vitro study of erythroid. Precursors in Vaquez’s disease (polycythemia vera). Evidence supporting 2 populations of elytroid. Stem cells in the bone marrow. Nouvelle Revue Francaise d’Hematologie. 1978; 20: 575-574. Ref. :
  46. Michiels JJ, Thiele J. Clinical and pathological criteria for the diagnosis of essential thrombocythemia, polycythemia vera and idiopathic myelofibrosis (agnogenic myeloid metaplasia). Int J Hematol. 2002; 76: 133-145. Ref.:
  47. Michiels JJ. Bone marrow histopathology and biological markers as specific clues to the differential diagnosis of essential thrombocythemia, polycythemia vera and prefibrotic or fibrotic myeloid metaplasia. Hematol J. 2004; 5: 93-102. Ref.:
  48. Thiele J, Kvasnicka HM, Diehl V. Bone marrow features of diagnostic impact in erythrocytosis. Ann Haematol. 2005; 84: 362-367. Ref.:
  49. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematologica. 2005; 113: 213-219. Ref.:
  50. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histopathology for the differentiation between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001; 86: 368-374. Ref.:
  51. Thiele J, Kvasnicka HM, Muehlhausen K, Walter S, Zankovich R, et al. Polycythemia rubra vera versus secondary polycythemias. A clinicopathological evaluation of distinctive features in 199 patients. Pathology Res Pract. 2001; 197: 77-84. Ref.:
  52. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Blood. 2007. 110: 1092-1097. Ref.:
  53. Sirhan S, Fairbanks VG, Tefferi A. Red cell mass and plasma volume measurements in polycythemia. Cancer. 2005; 104: 213-215. Ref.:
  54. Johansson PL, Safia-Kutti S, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythemia vera and apparent polycythaemia. Br J Haematol. 2005; 129: 701-705. Ref.:
  55. Westwood NB, Pearson TC. Diagnostic applications of haematopoietic progenitor culture techniques in polycythaemias and thrombocythaemias. Leukemia Lymphoma. 1996; 22: 95-103. Ref.:
  56. Juvonen E, Ikkala E, Oksanen K, Tapani R. Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complication. Br J Haematol. 1993; 83: 192-197. Ref.:
  57. Shih LY, Lee CT. Identification of masked polycythemia vera from patients with idiopathic thrombocytosis by endogenous elytroid colony assay. Blood. 1994; 83: 744-748. Ref.:
  58. Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF. Discrimination of polycythemias and thrombocytoses by novel simple, accurate clonality assays and comparison with PRV-1expression and BFU-e responses to erythropoietin. Blood. 2003; 101: 3294-3301. Ref.:
  59. Dobo I, Donnard M, Giridon F, Mossuz P, Boiret N, et al. Standardization and comparison of endogenous erythroid colony assays performed with bone marrow or blood progenitors for the diagnosis of polycythemia vera. Hematol J. 2004; 5: 161-167. Ref.:
  60. Mossuz P, Giridon F, Latger-Cannard V, Dobo I, Boiret N, et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica. 2004; 89: 1194-1198. Ref.:
  61. Johansson P, Andreason B, Safai-Kutti S, Wennstrom L, Palmqvist L, et al. The presence of a significant association between elevated PRV-1 mRNA expression and low plasma erythropoietin concentration in essential thrombocythemia. Eur J Haematol. 2003; 70: 358-362. Ref.:
  62. Temerinac S, Klippel S, Strunck E, Röder S, Lübbert M, et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is over expressed in polycythemia rubra vera. Blood. 2000; 95: 2569-2576. Ref.:
  63. Pahl HL. Polycythaemia vera: will new markers help us answer old questions? Acta Haematol. 2002; 108: 120-131. Ref.:
  64. Goertler PS, Steimle C, Maerz E, Johanson PL, Andreasson B, Griesshammer M, et al. The JAK2 V617F mutation, PRV-1 over expression and EEC formation define a similar cohort of MPD patients. Blood. 2005; 106: 2862-2864. Ref.:
  65. Griesshammer M, Klippel S, Strunk E, Temeric S, Mohr U, et al. PRV-1 mRNA expression discriminates two types of essential thrombocythemia. Ann Hematol. 2004; 83: 364-370. Ref.:
  66. Messinezy M, Westwood NB, El-Hemaida I, Marsden JT, Sherwood RS, et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol. 2002; 117: 47-53. Ref.:
  67. Jantunen R, Juvonen E, Ikkala E, Oksanen K, Antilla P, et al. Development of erythrocytosis in the course of essential thrombocythemia. Ann Hematol. 1999; 78: 219-222. Ref.:
  68. De Stefano V, Teofili L, Leone G, Michiels JJ. Spontaneous erythroid colony formation as the clue to an underlying myeloproliferative disorder in patients with Budd-Chiari syndrome or portal vein thrombosis. Sem Thromb Hemostas. 1997; 23: 411-418. Ref.:
  69. Chait Y, Condat B, Cazals-Hatem D, Rufat P, Atmani S, et al. Relevance of the criteria commonly used to diagnose myeloproliferative disorders in patients with splanchnic vein thrombosis. Br J Haematol. 2005; 129: 553-560. Ref.:
  70. Brière J. Budd-Chiari syndrome and portal vein thrombosis associated with myeloprioliferative disorders: diagnosis and management. Sem Thromb Hemostas. 2006; 32: 208-218. Ref.:
  71. Smalberg JH, Murad SD, Braakman E, Valk PJ, Janssen LA, et al. Myeloproliferative disease in the pathogenesis and survival of Budd-Chiari syndrome. Haematologica. 2006; 91: 1712-1713. Ref.:
  72. Patel RK, Lea NC, Heneghan A, Westwood N, et al. Prevalence of the activating JAK2 troikas mutation V617F in the Budd-Chiari Syndrome. Gastroenterology. 2006; 130: 2031-2038. Ref.:
  73. Colaizzo D, Amitrano L, Tiscia L, Scenna G, Grandone E, et al. The JAK2 V617F mutation frequently occurs in patients with portal vein and mesenteric vein thrombosis. J Thromb Haemostas. 2007; 5: 55-61. Ref.:
  74. De Stefano V, Fiorini A, Rossi E, Farina G, Reddiconto G, et al. Prevalence of the JAK2V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders. J Thromb Haemostas. 2007; 4: 708-714. Ref.:
  75. Pragmanini M, Barosi G, Berrgamaschi G, Fianelli U, Fabris F, et al. Role of the JAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein thrombosis. Hepatology. 2006; 44: 1528-1534. Ref.:
  76. Boissinot M, Lippert E, Girodon F, Dobo I, Fouassier M, et al. Latent myeloproliferative disorder revealed by the JAK2V617F mutation and endogenous megakaryocytic colonies in patients with splanchnic vein thrombosis. Blood. 2006; 108: 3323-3324. Ref.:
  77. Vainchenker W, Delhommeau F, Villeval JL. Molecular pathogenesis of the myeloproliferative diseases. Hematology Education, EHA. 2007; 1: 239-246.
  78. Delhommeau F, Pisani DF, James C, Casadevall N, Constatinescu S, et al. Oncogenic mechanism in myeloproliferative disorders. Cell Mol Life Sci. 2006; 63: 2939-2953. Ref.:
  79. Villeval JL, James C, Pisani DF, Casadevall N, Vainchenker W. New insights into the pathogenesis of JAK2V617F-positive myeloproliferative disorders and consequences for the management of patients. Sem Thromb Hemostas. 2006; 32: 341-351. Ref.:
  80. Michiels JJ, Berneman Z, Van Bockstaele D, Van Der Planken M, De Raeve H, et al. Clinical and laboratory features, pathobiology of platelet-mediated thrombosis and bleeding complications and the molecular etiology of essential thrombocythemia and polycythemia vera: therapeutic implications. Sem Thromb Hemostas. 2006; 32: 174-207. Ref.:
  81. Passamonti F, Rumi E, Pietra D, Della Porta MG, Boveri E,  et al. Relation between JAK2 V617F mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood. 2006; 107: 3676-3682. Ref.:
  82. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F JAK2 mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006; 108: 2435-2437. Ref.:
  83. Dupont S, Massé A, James C, et al. The JAK2V617F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood. 2007. 110: 1013-1021. Ref.:
  84. Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia. Cancer. 2006; 106: 631-635. Ref.:
  85. Chen Z, Notohamiprodjo M, Guan XX, Paietta E, Blackwell S, et al. Gain of 9p in the pathogenesis of polycythemia vera. Genes Chromosomes & Cancer. 1998; 22: 321-324. Ref.:
  86. Naifeld V, Montella L, Scalise A, Fruchtman S. Exploring polycythemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br J Haematol. 2002; 119: 558-566. Ref.:
  87. Campbell PJ, Baxter EJ, Beer PhA, Scott LM, Bench AJ, et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and the role in leukemic transformation. Blood. 2006; 18: 3548-3555. Ref.:
  88. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. New Eng J Med. 2007; 356: 459-468. Ref.:
  89. Zhou W, Toombs CF, Zou T, Guo J, Robinson MO. Transgenic mice overexpression human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluoruracil or antiplatelet serum treatment. Blood. 1997; 89: 1551-1559. Ref.:
  90. Pikman Y, Lee BH, Mercher Th, McDowell E, Ebert BL, et al. MPLW515L is a novel somatic activation mutation in myelofibrosis with myeloid metaplasia. PLOS Med. 2006; 3: e270. Ref.:
  91. Pardanani A, Levine RL, Lasho TL, Pikman Y, Mesa RA, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006; 108: 3472-3476. Ref.:
  92. Michiels JJ, Abels J, Steketee J, vanVliet HHDM, Vuzevski VD. Erythromelalgia caused by platelet-mediated arteriolar inflammation and thrombosis in thrombocythemia. Ann Intern Med. 1985; 102: 466-471. Ref.:
  93. Michiels JJ, Koudstaal P, Mulder AH, van Vliet HHDM. Transient neurologic and ocular manifestations in primary thombocythemia. Neurology. 1993; 43: 1107-1110. Ref.:
  94. Michiels JJ, van Genderen PJJ, Lindemans J, van Vliet HHDM. Erythromelalgic, thrombotic and hemorrhagic manifestations in 50 cases of thrombocythemia. Leukemia & Lymphoma. 1996; 22: 47-56. Ref.:
  95. Michiels JJ, Commandeur S, Hoogenboom GJ, Wegman JJ, Scholten L, et al. JAK2V617F positive early stage myeloproliferative disease (essential thrombocythemia) as the cause of portal vein thrombosis in two middle-aged females: therapeutic implications in view of the literature. An Hematol. 2007; 86: 793-800. Ref.:
  96. Schlemper RJ, van der Maas APC, Eikenboom JCJ. Familial essential thrombocythemia: clinical charateristics of 11 cases in one family. Ann Hematol. 1994; 68: 153-158. Ref.:
  97. Wiestner A, Schlemper RJ, van der Maas APC, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythemia. Nat Genet. 1998; 18: 49-52. Ref.:
  98. Kralovics R, Buser AS, Teo SS, Coers J, Tchelli A, et al. Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders. Blood. 2003; 102: 1869-1871. Ref.:
  99. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes the receptor for thrombopoietin. Blood. 2004; 103: 4198-4200. Ref.:
  100. Georgii A, Buhr T, Buesche G, Kreft A, Choritz H. Classification and staging of Ph-negative myeloproliferative disorders by histopathology from bone marrow biopsies. Leukemia and Lymphoma. 1996; 22: 15-29. Ref.:
  101. Georgii A, Buesche G, Kreft A. The histopathology of chronic myeloproliferative diseases. Bailière’s Clin Haematol. 1998; 11:721-749.
  102. Thiele J, Kvasnicka HM, Werden C, Zankovich R, Diehl Fischer R. Idiopathic primary osteomyelofibrosis: A clinico-pathological study on 208 patients with special emphasis on evolution of disease features, differentiation from essential thrombocythemia and variables of prognostic impact. Leukemia and Lymphoma. 1996; 22: 303-317. Ref.:
  103. Thiele J, Kvasnicka HM, Diehl V, Fischer R, Michiels JJ. Clinicopathological diagnosis and differential criteria of thrombocythemias in various myeloproliferative disorders by histopathology, histochemistry and immunostaining from bone marrow biopsies. Leukemia and Lymphoma. 1999; 33: 207-218. Ref.:
  104. Thiele J. Kvasnicka HM, Fischer R. Histochemistry and morphometry on bone marrow biopsies in chronic myeloproliferative disorders: aids to diagnosis and classification. Ann Hematol. 1999; 78: 495-506. Ref.:
  105. Thiele J, Kvasnicka HM. Clinicopathological criteria for the differential diagnosis of thrombocythemia in various myeloproliferative disorders. Sem Thromb Hemostas. 2006; 32: 219-230. Ref.:
  106. Thiele J, Kvasnicka HM. A critical reappraisal of the WHO classification of the chronic myeloproliferative disorders. Leukemia and Lymphoma. 2006; 47: 381-396. Ref.:
  107. Thiele J, Kvasnicka HM. Hematologic findings in chronic idiopathic myelofibrosis. Sem Oncol. 2005; 32: 380-304.
  108. Kvasnicka HM, Thiele J. The impact of clinicopathological studies on staging and survival in ET, PV and IMF. Sem Thromb Hemostas. 2006; 32: 362-371. Ref.:
  109. Barosi G, Ambrosetti A, Finelli C, et al. The Italian consensus on diagnostic criteria for myelofibrosis with myeloid metaplasia. Br J Haematol. 1999; 104: 730- 737. Ref.:
  110. Barosi G, Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines. J Clin Oncol. 199; 17: 2954-2970. Ref.:
  111. Michiels JJ, Kutti J, Stark P, Bazzan M, Gugliotta L, et al. Diagnosis, pathogenesis and treatment of the myeloproliferative disorders essential thromboythemia, polycythemia vera and essential megakaryocytic granulocytic myeloproliferation and myelofibrosis. Neth J Med. 1999; 54: 46-62. Ref.:
  112. Michiels JJ, De Raeve H, Hebeda K, Lam KH, Berneman Z, et al. WHO bone marrow features and European clinical molecular and pathlogical criteria for the diagnosis and classification of myeloproliferative disorders. Leuk Res. 2007; 31: 1031-1038. Ref.:
  113. Gianelli U, Vener C, Ravielle PR, Moro A, Savi F, et al. Essential thrombocythemia or chronic myelofibrosis? A single-center study based on hematopoietic bone marrow histology. Leuk Lymph. 2006; 47: 1774-1781. Ref.:
  114. Kreft A, Buche G, Ghalibafian M, Buhr T, Fischer T, et al. The incidence of myelofibrosis in essential thrombocythemia, polycythemia vera and chronic idiopathic myelofibrosis: a retrospective evaluation of sequential bone marrow biopsies. Acta Haematol. 2005; 113: 137-143. Ref.:
  115. Thiele J, Kvasnicka HM, Schmitt-Graeff A, Zankovich R, Diehl V. Follow-up examinations including sequential bone marrow biopsies in essential thrombocythemia (ET): a retrospective clinicopathological study of 120 patients. Am J Hematol. 2002; 70: 283-291. Ref.:
  116. Cervantes F, Alvarez-Larran A, Talarn C, Gomez M, Montserrat E. Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients. Br J Haematol. 2002; 118: 786-790. Ref.:
  117. Wolansky A, Schwager SM, McClure RF, Larson DR, Tefferi A. Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc. 2006; 81: 159-166. Ref.:
  118. Michiels JJ, Berneman ZW, Schroyens W, Kutti J, Swolin B, et al. Philadelphia (Ph) chromosome positive thrombocythemia without features of chronic myeloid leukemia in peripheral blood: natural history and diagnostic differentiation from Ph-negative essential thrombocythemia. Ann Hematol. 2004; 83: 504-512. Ref.:
  119. Schmitt-Graeff A, Thiele J, Zuk I, Kvasnicka HM. Essential thrombocythemia with ringed sideroblasts: a heterogenous spectrum of diseases, but not a distinct entity. Haematologica. 2002; 87: 392-399. Ref.:
  120. Shaw GR. Ringed sideroblasts with thrombocytosis: an uncommon mixed myelodysplastic/myeloproliferative disease of older adults. Br J Haematol. 2005; 131: 180-184. Ref.:
  121. Szpurka H, Tiu R, Murugesan G, Aboudola S, His ED, et al. Refractory anemia with ringed sideroblasts associated with matked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2V617F mutation. Blood. 2006; 108: 2173-2181. Ref.:
  122. Gatterman N, Billiet J, Kronenwett R, Zipperer E, Germing U, et al. High frequency of the JAK2 V617F mutation in patients with thrombocytosis (platelet count >600 x109/l) and ringed sideroblasts more than 15% considered as MDS/MPD, unclassifiable. Blood. 2007; 109: 1334-1335. Ref.:
  123. Campbell P, Scott LM, Buck G, Wheatley K, East CL, et al. Definition of essential thrombocythemia and relation of essential thrombocythemia to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005; 366: 1945-1953. Ref.:
  124. Campbell P, Green AR. The myeloproliferative disorders. New Eng J Med. 2006; 355: 2452-2466. Ref.:
  125. Juvonen E, Ikkala EE, Fyrrquist F Ruutu T. Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin. Blood. 1991; 78: 3066-3069. Ref.:
  126. De La Chapelle A, Träskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci. 1993; 90: 4495-4499. Ref.:
  127. James C, Delhommeau F, Marzac C, Teyssandier I, Couédic JP, et al. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 2006: 20: 350-353. Ref.:
  128. Tefferi A, Pardanani A. Mutation screening for JAK2V617F: when to order the test and how to interpret the results. Leukemia Res. 2006; 30: 739-744. Ref.:
  129. Adamson JW. The erythropoietin/hematocrit relationship in normal and polycythemic man: implicatons of marrow regulation. Blood. 1968; 32: 597-609. Ref.:
  130. Napier JAF, Janowsky-Wieczorck A. Erythropoietin measurements in the differential diagnosis of polycythemia. Br J Haematol. 1981; 48: 393-401. Ref.:
  131. Cotes PM, Dore CJ, Tin JA, Lewis SM, Messinezy M, et al. Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis. N Eng J Med. 1986; 315: 283-287. Ref.:
  132. Birgegard G, Wide L. Serum erythropoietin in the diagnosis of polycythemia and after phlebotomy treatment. Br J Haematol. 1992; 81: 603-606. Ref.:
  133. Messinezy M, Westwood NB, Woodstock SP, Strong RM, Pearson TC. Low serum erythropoietin: a strong diagnostic criterion of primary polycythaemia even at normal haemoglobin levels. Clin Lab Haematol. 1995; 17: 217-220. Ref.:
  134. Tefferi A. The diagnosis of polycythemia vera: new tests and old dictums. Best Practice & Research Clin Haematol. 2006; 19: 455-469. Ref.:
  135. Andreasson B, Löfvenberg E, Westin J. Management of patients with polycythemia vera: results of a survey among Swedish haematologists. Eur J Haematol. 2005; 74: 489-495. Ref.:
  136. Le Bousse-Kerdiles MC, Martyré MC. Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis. Ann Hematol. 1999; 78: 437-444. Ref.:
  137. Bauermeister DE. Quantification of bone marrow reticulin. Am J Clin Pathol. 1971; 56: 24-31. Ref.:
  138. Manoharan A, Smart RC, Pitney WR. Prognostic factors in myelofibrosis. Pathology. 1982; 14: 445-461. Ref.:
  139. Thiele J, Kvasnicka HM, Facchetti F, Franco V, Van Der Walt J, et al. European consensus for grading of bone marrow fibrosis and assessment of cellularity in myeloproliferative disorders. Haematologica. 2005; 90: 1128-1132. Ref.:
  140. Moliterno AR, Williams DM, Rogers O, Spivak JL. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2V617F and MPL expression. Blood. 2005; 106: 3520. Ref.:
  141. Bock O, Busche G, Koop C, Schroter S, Buhr T, et al. Detection of the single hotspot mutation in the JH2 pseudokinase domain of Janus kinase 2 in bone marrow trephine biopsies derived from myeloproliferative disorders. J Mol Diagn. 2006; 8: 170-177. Ref.:
  142. Bock O, Neuse J, Hussein K, Brakensiek K Buesche G, et al. Aberrant collagenase expression in chronic idiopathic myelofibrosis (CIMF) is related to the stage of disease but not to the JAK2 mutation status. Am J Pathol. 2006; 169: 471-481. Ref.:
  143. Horn Th, Kremer M, Dechow T, Pfeifer WM, Geist B, et al. Detection of the activating JAK2 V617F mutation in paraffin-embedded trephine bone marrow biopsies of patients with chronic myeloproliferative diseases. J Mol Diagn. 2006; 3: 299-304. Ref.:
  144. Michiels JJ, Kvasnicka HM, Thiele J. Myeloproliferative disorders. 2005 Verlag ME-Uwe Grunwald, Munich, Germany. ISBN. 3-9808075-6-8.
  145. Xu X, Zhang Q, Xing S, Li Q, Krantz A, et al. JAK2V617F: prevalence in a large Chinese hospital population. Blood. 2007; 109: 339-342. Ref.:
  146. Sidon EL Housni H, Dessars B, Heiman P. The JAK2V617F mutation is detectable at very low level in peripheral blood. Leukemia. 2006; 20: 1662. Ref.:
  147. Passamonti F, Rumi E, Pietra D, Lazzarino M, Cazzola M. JAK2 (V617F) mutation in healthy individuals. Br J Haematol. 2007: 136: 677-679. Ref.:
  148. Michiels JJ, De Raeve H, Berneman Z, Van Bockstaele D, Hebeda K, et al. The 2001 World Health Organization (WHO) and updated European clinical and pathological (ECP) criteria for the diagnosis, classification and staging of the Ph1-chromosome negative chronic myeloproliferative disorders (MPD). Sem Thromb Hemostas. 2006; 32: 307-340.
  149. Michiels JJ, Berneman Z, Van Bockstaele D, De Raeve H, Schroyens W. Current diagnostic criteria for the chronic myeloproliferative disorders (MPD) essential thrombocythemia (ET), polycythemia vera (PV) and chronic idiopathic myelofibrosis (CIMF). Pathologie Biologie. 2007; 55: 92-104. Ref.:
  150. Michiels JJ, Berneman Z, Schroyens W, De Raeve H. Changing concepts on the diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms. From Dameshek 1950 to Vainchenker 2005 and beyond. Acta Haematol. 2015; 133: 36-51. Ref.:
  151. De Raeve H, Fostier K, Valster F, Potters V, Kim Y, et al. Bone Marrow Histology is a Pathognomonic Clue to Each of the JAK2V617F, MPL515 and Calreticulin Mutated Thrombocythemia in Myeloproliferative Neoplasms. Clin Res Hematol 2018: 1: 1-7. Ref.:
  152. De Raeve H, Michiels JJ, Valster F, Potters V, Kim  Y, et al. Novel Clinical, Laboratory, Molecular and Pathological (2018 CLMP) Criteriafor the Differential Diagnosis of three Distinct JAK2, CALR and MPL MutatedMyeloproliferative Neoplasms: The Role of Driver Mutation Analysis and Bone Marrow Histology. Int J Cancer Res Ther. 2018; 3: 1-12.